
CiAO: An Aspect-Oriented Operating-System Family
for Resource-Constrained Embedded Systems∗

Daniel Lohmann, Wanja Hofer, Wolfgang Schröder-Preikschat
{lohmann, hofer, wosch}@cs.fau.de

FAU Erlangen–Nuremberg

Jochen Streicher, Olaf Spinczyk
{jochen.streicher, olaf.spinczyk}@tu-dortmund.de

TU Dortmund

Appeared in: Proceedings of the 2009 USENIX Annual Technical Conference (USENIX ’09),

http://www.usenix.org/events/usenix09/tech/ pages 215–228, USENIX Association, 2009. ISBN: 978-1-931971-68-3

Abstract
This paper evaluates aspect-oriented programming (AOP)
as a first-class concept for implementing configurability
in system software for resource-constrained embedded
systems. To compete against proprietary special-purpose
solutions, system software for this domain has to be highly
configurable. Such fine-grained configurability is usually
implemented “in-line” by means of the C preprocessor.
However, this approach does not scale – it quickly leads to
“#ifdef hell” and a bad separation of concerns. At the same
time, the challenges of configurability are still increasing.
AUTOSAR OS, the state-of-the-art operating-system stan-
dard from the domain of automotive embedded systems,
requires configurability of even fundamental architectural
system policies.

On the example of our CiAO operating-system family
and the AUTOSAR-OS standard, we demonstrate that
AOP – if applied from the very beginning – is a pro-
found answer to these challenges. Our results show that
a well-directed, pragmatic application of AOP leads to
a much better separation of concerns than does #ifdef-
based configuration – without compromising on resource
consumption. The suggested approach of aspect-aware
operating-system development facilitates providing even
fundamental system policies as configurable features.

1 Introduction

The design and implementation of operating systems has
always been challenging. Besides the sheer size and the
inherent asynchronous and concurrent nature of operating-
system code, developers have to deal with lots of crucial
nonfunctional requirements such as performance, relia-
bility, and maintainability. Therefore, researchers have

∗This work was partly supported by the German Research Council
(DFG) under grants no. SCHR 603/4, SCHR 603/7-1, and SP 968/2-1.

always tried to exploit the latest advances in programming
languages and software engineering (such as object orien-
tation [6], meta-object protocols [26], or virtual execution
environments [14]) in order to reduce the complexity of
operating system development and to improve the sys-
tems’ nonfunctional properties.

1.1 Operating Systems for Small
Embedded Systems

This paper focuses on small (“deeply”) embedded sys-
tems. More than 98 percent of the worldwide annual
production of microprocessors ends up in small embed-
ded systems [24] – typically employed in products such
as cars, appliances, or toys. Such embedded systems are
subject to an enormous hardware-cost pressure. System
software for this domain has to cope not only with strict
resource constraints, but especially with a broad variety
of application requirements and platforms. So to allow
for reuse, an operating system for the embedded-systems
domain has to be developed as a system-software product
line that is highly configurable and tailorable. Further-
more, resource-saving static configuration mechanisms
are strongly favored over dynamic (re-)configuration.

A good example for this class of highly configurable
systems with small footprint is the new embedded
operating-system standard specified by AUTOSAR, a con-
sortium founded by all major players in the automotive
industry [3]. The goal of AUTOSAR is to continue the
success story of the OSEK-OS specification [19]. OSEK-
compliant operating systems have been used in almost
all European cars over the past ten years, which led to an
enormous productivity gain in automotive software devel-
opment. AUTOSAR extends the OSEK-OS specification
in order to cover the whole system-software stack includ-
ing communication services and a middleware layer.

Even in this restricted domain, there is already a huge
variety of application requirements on operating systems.
For instance, power-train applications are typically safety-

http://www.usenix.org/events/usenix09/tech/

1 Cyg_Mutex::Cyg_Mutex() {
2 CYG_REPORT_FUNCTION();
3 locked = false;
4 owner = NULL;
5 #if defined(CYGSEM_PRI_INVERSION_PROTO_DEFAULT) && \
6 defined(CYGSEM_PRI_INVERSION_PROTO_DYNAMIC)
7 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_INHERIT
8 protocol = INHERIT;
9 #endif

10 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_CEILING
11 protocol = CEILING;
12 ceiling = CYGSEM_PRI_INVERSION_PROTO_DEFAULT_PRI;
13 #endif
14 #ifdef CYGSEM_PRI_INVERSION_PROTO_DEFAULT_NONE
15 protocol = NONE;
16 #endif
17 #else // not (DYNAMIC and DEFAULT defined)
18 #ifdef CYGSEM_PRI_INVERSION_PROTO_CEILING
19 #ifdef CYGSEM_DEFAULT_PRIORITY
20 ceiling = CYGSEM_DEFAULT_PRIORITY;
21 #else
22 ceiling = 0; // Otherwise set it to zero.
23 #endif
24 #endif
25 #endif // DYNAMIC and DEFAULT defined
26 CYG_REPORT_RETURN();
27 }

Figure 1: ”#ifdef hell” example from eCos [18]

critical and have to deal with real-time requirements,
while car body systems are far less critical. Hardware
platforms range from 8-bit to 32-bit systems. Some ap-
plications require a task model with synchronization and
communication primitives, whereas others are much sim-
pler control loops. In order to reduce the number of elec-
tronic control units (up to 100 in modern cars [5]), some
manufacturers have the requirement to run multiple appli-
cations on the same unit, which is only possible with guar-
anteed isolation; others do not have this requirement. To
fulfill all these varying requirements, the AUTOSAR-OS
specification [2] describes a family of systems defined by
so-called scalability classes. It not only requires config-
urability of simple functional features, but also of all poli-
cies regarding temporal and spatial isolation. To achieve
this within a single kernel implementation is challenging.
The decision about fundamental operating-system poli-
cies (like the question if and how address-space protection
boundaries should be enforced) is traditionally made in
the early phases of operating-system development and is
deeply reflected in its architecture, which in turn has an
impact on many other parts of the kernel implementation.
In AUTOSAR-OS systems, these decisions have to be
postponed until the application developer configures the
operating system.

1.2 The Price of Configurability

In a previous paper [17], we analyzed the implementation
of static configurability in the popular eCos operating

system [18], which also targets small embedded systems.
The system implements configurability in the familiar
way with #ifdef-based conditional compilation (in C++).
Even though eCos does not support configurability of
architectural concerns as required by AUTOSAR (such as
the memory or timing protection model), we have found
an “#ifdef hell”, which illustrates that these techniques do
not scale well enough. Maintainability and evolvability
of the implementation suffer significantly. As an example,
Figure 1 shows the “#ifdef hell” in the constructor of
the eCos mutex class, caused by just four variants of the
optional protcol for the prevention of priority inversion.
However, the configurability of this protocol does not only
affect the constructor code – a total of 34 #ifdef-blocks
is spread over 17 functions and data structures in four
implementation files.

As a solution, we proposed aspect-oriented program-
ming (AOP) [15] and analyzed the code size and perfor-
mance impact of applying AOP to factor out the scattered
implementation of configurable eCos features into distinct
modules called aspects.

1.3 Aspect-Oriented Programming

AOP describes a programming paradigm especially de-
signed to tackle the implementation of crosscutting con-
cerns – concerns that, even though conceptually distinct,
overlap with the implementation of other concerns in the
code by sharing the same functions or classes, such as the
mutex configuration options in eCos.

In AOP, aspects encapsulate pieces of code called ad-
vice that implement a crosscutting concern as a distinct
module. A piece of advice targets a number of join points
(points in the static program structure or in the dynamic
execution flow) described by a predicate called pointcut
expression. Pointcut expressions are evaluated by the
aspect weaver, which weaves the code from the advice
bodies to the join points that are matched by the respective
predicates.

As pointcuts are described declaratively, the target code
itself does not have to be prepared or instrumented to be
affected by aspects. Furthermore, the same aspect can
affect various and even unforeseen parts of the target code.
In the AOP literature [10], this is frequently referred to as
the obliviousness and quantification properties of AOP.

The AOP language and weaver used in the eCos study
and in the development of CiAO is AspectC++ [22],
a source-to-source weaver that transforms AspectC++
sources to ISO C++ code, which can then be compiled by
any standard-compliant C++ compiler.

Figure 2 illustrates the syntax of aspects written in
AspectC++. The (excerpted) aspect Priority_Ceiling
implements the priority ceiling variant of the eCos mu-
tex class. For this purpose, it introduces a slice of addi-

216

Figure 2: Syntactical elements of an aspect

tional elements (the member variable ceiling) into the
class Cyg_Mutex and gives a piece of advice to initialize
ceiling after each construction of a Cyg_Mutex instance.
The targets of the introduction and the piece of construc-
tion advice are given by pointcut expressions.

In AspectC++, pointcut expressions are built from
match expressions and pointcut functions. The match
expression "Cyg_Mutex", for instance, returns a pointcut
containing just the class Cyg_Mutex. Match expressions
can also be fed into pointcut functions to yield pointcuts
that represent events in the control flow of the running
program, such as the event where some function is about
to be called (call() advice) or an object instance is about
to be constructed (see construction("Cyg_Mutex") in
Figure 2). In most cases, the join points for a given point-
cut can be derived statically by the aspect weaver so that
the respective advice is also inserted statically at compile
time without any run-time overhead.

The construction pointcut in the example is used to
specify some after advice – that is, additional behavior
to be triggered after the event occurrence. Other types
of advice include before advice (speaks for itself) and
around advice (replaces the original behavior associated
with the event occurrence).

Inside the advice body, the type and pointer JoinPoint
*tjp provide an interface to the event context. The aspect
developer can use this join-point API to retrieve (and
partly modify) contextual information associated with
the event, such as the arguments or return value of the
intercepted function call (tjp->arg(i), tjp->result()).
The tjp->that() in Figure 2 returns the this pointer
of the affected object instance, which is used here to
initialize the ceiling member variable (which in this
case was introduced by the aspect itself).

1.4 Contribution and Outline
The results of applying AOP to eCos were very promis-
ing [17]. The refactored eCos system was much better
structured than the original; the number of configuration
points per feature could be drastically reduced. At the
same time, we found that there is no negative impact on

the system’s performance or code size.
However, we also found that not all configurable fea-

tures could be refactored into a modular aspect-oriented
implementation. The main reason was that eCos did
not expose enough unambiguous join points. We took
this as a motivation to work on “aspect-aware operating
system design”. This led to the development of funda-
mental design principles and the implementation of the
CiAO1 OS family for evaluation purposes. The idea was
to build an operating system in an aspect-oriented way
from scratch, considering AOP and its mechanisms from
the very beginning of the development process. The re-
sulting CiAO system is aspect-aware in the sense that it
was analyzed, designed, and implemented with AOP prin-
ciples in mind. In order to avoid evaluation results biased
by the eCos implementation, CiAO was newly designed
after the AUTOSAR-OS standard introduced above [2].

Our main goal is to evaluate the suitability of aspect-
oriented software development as a first-class concept
for the design and implementation of highly configurable
embedded system software product-lines. The research
contributions of this work are the following:

• Deeper insights on reasons for the #ifdef hell and the
value of AOP in this context (Section 2).

• Design principles for aspect-aware operating system
development (Section 4).

• CiAO: The first complete implementation of an oper-
ating system kernel developed with AOP concepts2

(Section 5).

• A discussion of our results from CiAO (Section 6)
and general experiences with the approach (Sec-
tion 7).

For each of the topics, there is a dedicated section in the
remaining part of this paper. In addition to that, Section 3
discusses relevant related work. The paper ends with our
conclusions in Section 8.

2 Problem Analysis

Why exactly do state-of-the-art configurable systems like
eCos exhibit badly modularized code termed as “#ifdef
hell”? Is this an inherent property of highly configurable
operating systems or just a matter of implementation
means? In order to examine these questions, we took
a detailed look at an abstract system specification, namely
the AUTOSAR-OS standard introduced in Section 1.

1CiAO is Aspect-Oriented
2The CiAO-OS family is freely available for research purposes from

the authors.

217

!

System abstractions (functional) Callbacks Protection facilities (architectural) Internal

O
S

co
n
tr

o
l

Ta
sk

s

IS
R

s
ca

te
g
o
ry

1

IS
R

s
ca

te
g
o
ry

2

R
e
so

u
rc

e
s

E
ve

n
ts

A
la

rm
s

H
o
o
ks

... T
im

in
g

p
ro

te
ct

io
n

In
va

lid
p
a
ra

m
e
te

rs

W
ro

n
g

co
n
te

xt

In
te

rr
u
p
ts

d
is

a
b
le

d

F
o
re

ig
n

O
S

o
b
je

ct
s

... P
re

e
m

p
tio

n

...

... <3 OS services> ⊕ !" ... #" #" #" #"

ActivateTask() ⊕ !" ... #" #" #" #" ... !" ...

TerminateTask() ⊕ !" ... #" #" ... !" ...

Schedule() ⊕ !" ... #" #" ... !" ...

... <3 more task services> ⊕ !" ... #" #" #" #" ... !" ...

ResumeAllInterrupts() ⊕ ... #" #"

SuspendAllInterrupts() ⊕ ... !" #"

... <7 more ISR services> ⊕ ⊕ !" ... $ #" #" #" #"

GetResource() ⊕ !" ... !" #" #" #" #"

ReleaseResource() ⊕ !" ... #" #" #" #" #" ... !" ...

... <4 event services> ⊕ !" ... #" #" #" #" ... !" ...

... <6 alarm services> ⊕ !" ... #" #" #" #" ... !" ...

... <7 schedule table services> ⊕ !" ... #" #" #" #"

... <7 OS application services> !" ... #" #" #" #"

TaskType ⊕ ! ! ... ! ! ... ! ...

ResourceType ⊕ ... !

... <4 more structures> ⊕ ! ⊕ ! ⊕ ... ! !

System startup !" !" !"

Task switch $... $

Protection violation !"

... <4 more internal points> !" !" #" ... $!" ... !" ...

"

#

Table 1: Influence of configurable concerns (columns) on system services, system types, and internal events (rows) in
AUTOSAR OS [2, 19]; kind of influence: ⊕ = extension of the API by a service or type, � = extension of an existing
type, H# = modification after service or event, G# = modification before, = modification before and after

2.1 Why #ifdef Hell Appears
to Be Unavoidable

The AUTOSAR-OS standard proposes a set of scalability
classes for the purpose of system tailoring. These classes
are, however, relatively coarse-grained (there are only
four of them) and do not clearly separate between con-
ceptually distinct concerns. CiAO provides a much better
granularity; each AUTOSAR-OS concern is represented
as an individual feature in CiAO, subject to application-
dependent configuration.

In order to be able to grasp all concerns and their inter-
actions, we have developed a specialized analysis method
termed concern impact analysis (CIA) [13]. The idea be-
hind CIA is to consider requirement documents together
with domain-expert knowledge to develop a matrix of
concerns and their influences in an iterative way. In the
analysis of the AUTOSAR-OS standard, CIA yielded a
comprehensive matrix, which is excerpted in Table 1.

The rows show the AUTOSAR OS system services
(API functions) and system abstractions (types) in groups
that represent distinct features. AUTOSAR OS is a stat-
ically configured operating system with static task pri-
orities; hence, at run time, only services that alter the
status of a task (e.g., setting it ready or suspended) are
available. Interrupt service routines (ISRs), in contrast,
are triggered asynchronously; the corresponding system
functionality allows the application to prohibit their occur-

rence collectively or on a per-source basis. AUTOSAR
OS distinguishes between two categories of ISRs that are
somewhat comparable to top halves and bottom halves in
Linux: Category-1 ISRs are scheduled by the hardware
only and must not interact with the kernel. Category-2
ISRs, in contrast, run under the control of the kernel and
may invoke other AUTOSAR-OS services. The third type
of control flows supported by the AUTOSAR-OS kernel
are hooks. Hooks define a callback interface for applica-
tions to be notified about kernel-internal events, such as
task switch events or error conditions (see Column 8 in
Table 1).

Resources are the means for AUTOSAR applications
to ensure mutual exclusion to synchronize concurrent ac-
cess to data structures or hardware periphery. They are
comparable to mutex objects in other operating systems.
In order to avoid priority inversion and deadlocks, AU-
TOSAR prescribes a stack-based priority ceiling protocol,
which adapts task priorities at run time. Hence, a task
never blocks on GetResource(). The only way for ap-
plication tasks to become blocked is by waiting for an
AUTOSAR-OS event; another task or ISR that sets that
event can unblock that task.

Alarms allow applications to take action after a speci-
fied period of time; a schedule table is an abstraction that
encapsulates a series of alarms. Finally, tasks, ISRs, and
data can be partitioned into OS applications, which define
a spatial and temporal protection boundary to be enforced

218

by the operating system.
The table lists selected identified concerns of AU-

TOSAR OS (column headings) and how we can expect
them to interact with the named entities of the specifi-
cation (row headings); that is, the 44 system services
(e.g., ActivateTask()) and the relevant system abstrac-
tions (e.g., TaskType) as specified in [19, 2]. Furthermore,
the lower third lists how we can expect concerns to im-
pact system-internal transitions, which are not visible
in the system API that is specified by the standard. Ta-
ble 1 thereby provides an overview of how we can expect
AUTOSAR-OS concerns to crosscut with each other in
the structural space (abstractions, services) and behavioral
space (control flow events) of the implementation.

The comprehensive table shows that a system that is
built according to that specification will inherently exhibit
extensive crosscutting between its concern implementa-
tions, leading to code tangling (many different concerns
implemented in a single implementation module) and
scattering (distribution of a single concern implementa-
tion across multiple implementation artifacts). This is
because services like ReleaseResource() (see Table 1,
row Ê) and types like TaskType (see Table 1, row Ë), for
instance, are affected by as many as nine different con-
cerns! That means that these implementations will exhibit
at least nine #ifdef blocks – in the ideal case that each
concern can be encapsulated in a single block, completely
independent of the other concerns (which is unrealistic,
of course). In fact, there is not a single AUTOSAR-OS
service that is influenced by only one concern, which
means that a straight-forward implementation using the C
preprocessor will have numerous #ifdefs in every imple-
mentation entity. Thus, “#ifdef hell” seems unavoidable
for the class of special-purpose, tailorable operating sys-
tems.

2.2 Why AOP Is a Promising Solution
There are several properties inherent in AOP that are
promising with respect to overcoming the drawbacks in
#ifdef-based configuration techniques that were detailed
above.

First, AOP introduces a new kind of binding between
modules. In traditional programming paradigms, the
caller module P (event producer) knows and has to know
the callee module C (event consumer); that is, its name
and interface (see Figure 3.a):

void C::callee() {

<additional feature>

}

void P::caller() {

...

C::callee(); // has to know C to bind feature

}

C

callee()

P

caller()

ca
lle

e

kn
ow

s

(a)

«aspect»
C

exec("caller")

P

caller()

know
s

"caller"

(b)

«aspect»
C

exec("%::caller")

P1

caller()

Pn

caller()
. . .

(c)

. . .

Figure 3: The mechanisms offered by AOP: advice-based
binding and implicit per–join-point instantiation of advice

The advice-based binding mechanism offered by AOP
can effectively invert that relationship: The callee (i.e.,
the aspect module C) can integrate itself into the caller
(i.e., the base code P) without the caller having to know
about the callee (see Figure 3.b):

advice execution("void P::caller()") : after() {

<additional feature>

}

void P::caller() {

...

// feature binds "itself"

}

If module C is optional and configurable, this loose cou-
pling is an ideal mechanism for integration, because the
call is implicit in the callee module. Using the tradi-
tional mechanisms, the call has to be included in the base
module P and therefore has to be explicitly omitted if
the feature implemented by module C is not in the cur-
rent configuration. This configurable omission is realized
by #ifdefs in state-of-the-art systems, bearing the signifi-
cant disadvantages described above. A similar advantage
of advice-based binding applies to configurable static
program entities like classes or structures; aspects can
integrate the state and operations needed to implement
the corresponding feature into those entities themselves
through slice introductions.

Second, by offering the mechanism of quantification
through pointcut-expression matching, AOP allows for
a modularized implementation of crosscutting concerns,
which is also one of its main proclaimed purposes. This
mechanism provides a flexible and implicit instantiation
of additional implementation elements at compile-time
(see Figure 3.c), ideally suited for the integration of con-
cern implementations into configurable base code where
the number of junction points (i.e., AOP join points) is
flexible, ranging from zero to n:

advice execution("void %::caller()") : after() {

<additional feature> // binds to any "caller()"

}

As we have seen in Table 1, most concerns in an
AUTOSAR-OS implementation have a crosscutting im-

219

pact on many different points in the system in a simi-
lar way. An example is the policy that system services
must not be called while interrupts are disabled (see Ta-
ble 1, column Ì). In the requirements specification of
AUTOSAR OS, this policy is defined by requirement
OS093:

If interrupts are disabled and any OS services,
excluding the interrupt services, are called out-
side of hook routines, then the operating system
shall return E_OS_DISABLEDINT. [2, p. 40]

This requirement can be translated almost “literally” to a
single, modularized AspectC++ aspect:

aspect DisabledIntCheck {

advice call(pcOSServices() && !pcISRServices())

&& !within(pcHooks()) : around() {

if(interruptsDisabled())

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

For convenience and the sake of separation of concerns,
the aspect uses predefined named pointcuts, which are
defined separately from the aspects in a global header
file and specify which AUTOSAR-OS service belongs to
which group:

pointcut pcOSServices() = "% ActivateTask()" || ...

pointcut pcISRServices() = ...

...

Using these named pointcuts, the aspect gives advice to
all points in the system where any OS service but not the
interrupt services are called:

call(pcOSServices() && !pcISRServices()) ...

The resulting set of join points is further filtered to exclude
all events from within a hook routine:

... && !within(pcHooks())

Thus, we eventually get all calls outside of hook routines
that are made to any service that is not an ISR service.
The piece of around advice given to these join points
performs a test whether the interrupts are currently dis-
abled: If positive, the return code is set to the prescribed
error code and the call is aborted; if negative, the call is
performed as normal. (Around advice replaces the orig-
inal processing of the intercepted event; however, it is
possible to invoke the original processing explicitly with
tjp->proceed().)
The complete concern is encapsulated in this single aspect.
The result is an enhanced separation of concerns in the
system implementation. Layered, configurable systems
can especially benefit from AOP mechanisms by being
able to flexibly omit parts of the system without breaking
caller–callee relationships.

3 Related Work

There are several other research projects that investigate
the applicability of aspects in the context of operating
systems. Among the first was the α-kernel project [7], in
which the evolution of four scattered OS concern imple-
mentations (namely: prefetching, disk quotas, blocking,
and page daemon activation) between versions 2 and 4
of the FreeBSD kernel is analyzed retroactively. The re-
sults show that an aspect-oriented implementation would
have led to significantly better evolvability of these con-
cerns. Around the same time, our own group experi-
mented with AspectC++ in the PURE OS product line
and later with aspect-refactoring eCos [17]. Our results
from analyzing the AspectC++ implementation of var-
ious previously hard-wired crosscutting concerns show
that this new paradigm leads to no overhead in terms of
resource consumption per se.

Not a general-purpose AOP language but an AOP-
inspired language of temporal logic is used in the Bossa
project to integrate the Bossa scheduler framework into
the Linux kernel [1]. Another example for a special-
purpose AOP-inspired language is C4 [12, 21], which is
intended for the application of kernel patches in Linux.
The same goal of smarter patches (with a focus on “col-
lateral evolutions” – changes to the kernel API that have
to be caught up in dozens or hundreds of device drivers)
is followed by Coccinelle [20]. Although the input lan-
guage for the Coccinelle engine “SmPL” is not called
an AOP language, it supports the modular implementa-
tion of crosscutting kernel modifications (i.e., quantifi-
cation). Other related work concentrates on dynamic
aspect weaving as a means for run-time adaptation of
operating-system kernels: TOSKANA provides an infras-
tructure for the dynamic extension of the FreeBSD kernel
by aspects [9]; KLASY is used for aspect-based dynamic
instrumentation in Linux [25].

All these studies demonstrate that there are good cases
for aspects in system software. However, both Bossa and
our own work on eCos show that a useful application
of AOP to existing operating systems requires additional
AOP expressivity that results in run-time overheads (e.g.,
temporal logic or dynamic instrumentation). So far no
study exists that analyzes the effects of using AOP for the
development of an operating-system kernel from the very
beginning. This paper explores just that.

4 Aspect-Aware Operating-System
Development

The basic idea behind aspect-aware operating-system de-
velopment is the strict separation of concerns in the im-
plementation. Each implementation unit provides exactly
one feature; its mere presence or absence in the config-

220

ured source tree decides on the inclusion of the particular
feature into the resulting system variant.

Technically, this comes down to a strict decoupling of
policies and mechanisms by using aspects as the primary
composition technique: Kernel mechanisms are glued
together and extended by aspects; they support aspects by
ensuring that all relevant internal control-flow transitions
are available as unambigious and statically evaluable join
points.

However, this availability cannot be taken for granted.
Improving the configurability of eCos even further did not
work as good as expected because of join-point ambigu-
ity [17]. For instance, eCos does not expose a dedicated
user API to invoke system services. This means that, on
the join-point level, user
kernel transitions are not stati-
cally distinguishable from the kernel-internal activation
and termination of system services. The consequence is
that policy aspects that need to hook into these events
become more expensive than necessary – for instance,
an aspect that implements a new kernel-stack policy by
switching stacks when entering/leaving the kernel. The
ideal implementation of the kernel-stack feature had a per-
formance overhead of 5% for the actual stack switches,
whereas the aspect implementation induced a total over-
head of 124% only because of unambiguous join points.
The aspect had to use dynamic pointcut functions to dis-
ambiguate at run time: It used cflow(), a dynamic point-
cut function that induces an extra internal control-flow
counter that has to be incremented, decremented, and
tested at run time to yield the join points.However, in
other cases it was not possible at all to disambiguate,
rendering an aspect-based implementation of new config-
uration options impossible.

We learned from this that the exposure of all relevant
gluing and extension points as statically evaluable and
unambigious join points has to be understood as a primary
design goal from the very beginning. The key premise
for such aspect awareness is a component structure that
makes it possible to influence the composition and shape
of components as well as all run-time control flows that
run through them by aspects [16].

4.1 Design Principles

The eCos experience led us to the three fundamental prin-
ciples of aspect-aware operating-system development:

The principle of loose coupling. Make sure that aspects
can hook into all facets of the static and dynamic
integration of system components. The binding of
components, but also their instantiation (e.g, place-
ment in a certain memory region) and the time and
order of their initialization should all be established
(or at least be influenceable) by aspects.

The principle of visible transitions. Make sure that as-
pects can hook into all control flows that run through
the system. All control-flow transitions into, out of,
and within the system should be influenceable by
aspects. For this they have to be represented on the
join-point level as statically evaluable, unambiguous
join points.

The principle of minimal extensions. Make sure that
aspects can extend all features provided by the sys-
tem on a fine granularity. System components and
system abstractions should be fine-grained, sparse,
and extensible by aspects.

Aspect awareness, as described by these principles, means
that we moderate the AOP ideal of obliviousness, which is
generally considered by the AOP community as a defining
characteristic of AOP [11]. CiAO’s system components
and abstractions are not totally oblivious to aspects – they
are supposed to provide explicit support for aspects and
even depend on them for their integration.

4.2 Role and Types of Classes and Aspects
The relationship between aspects and classes is asymmet-
rical in most AOP languages: Aspects augment classes,
but not vice versa. This gives rise to the question which
features are best to be implemented as classes and which
as aspects and how both should be applied to meet the
above design principles.

The general rule we came up with in the development
of CiAO is to provide some feature as a class if – and only
if – it represents a distinguishable instantiable concept of
the operating system. Provided as classes are:

1. System components, which are instantiated on be-
half of the kernel and manage its run-time state (such
as the Scheduler or the various hardware devices).

2. System abstractions, which are instantiated on be-
half of the application and represent a system object
(such as Task, Resource, or Event).

However, the classes for system components and system
abstractions are sparse and to be further “filled” by ex-
tension slices. The main purpose of these classes is to
provide a distinct scope with unambiguous join points for
the aspects (that is, visible transitions).

All other features are implemented as aspects. Dur-
ing the development of CiAO we came up with three
idiomatic roles of aspects:

1. Extension aspects add additional features to a sys-
tem abstraction or component (minimal extensions),
such as extending the scheduler by means for task
synchronization (e.g., AUTOSAR-OS resources).

221

2. Policy aspects “glue” otherwise unrelated system
abstractions or components together to implement
some kernel policy (loose coupling), such as activat-
ing the scheduler from a periodic timer to implement
time-triggered preemptive scheduling.

3. Upcall aspects bind behavior defined by higher lay-
ers to events produced in lower layers of the system,
such as binding a driver function to interrupt events.

The effect of extension aspects typically becomes visible
in the API of the affected system component or abstrac-
tion. Policy aspects, in contrast, lead to a different system
behavior. We will see examples for extension and pol-
icy aspects in the following section. Upcall aspects do
not contribute directly to a design principle, but have a
more technical purpose: they exploit advice-based bind-
ing and the fact that AspectC++ inlines advice code at
the respective join point for flexible, yet very efficient
upcalls.

5 Case Study: CiAO-AS

CiAO is designed and implemented as a family of operat-
ing systems and has been developed from scratch using
the principles of aspect-aware operating-system devel-
opment. Note, however, that the application developer
does not have to have any AOP expertise to use the OS.
A concrete CiAO variant is configured statically by se-
lecting features from a feature model in an Eclipse-based
graphical configuration tool [4].

The CiAO-AS family member implements an operating-
system kernel according to the AUTOSAR-OS stan-
dard3 [2], including configurable protection policies
(memory protection, timing protection, service protec-
tion). The primary target platform for CiAO is the Infi-
neon TriCore, an architecture of 32-bit microcontrollers
that also serves as a reference platform for AUTOSAR
and is widely used in the automotive industry.

5.1 Overview

Figure 4 shows the basic structure of the CiAO-AS kernel.
Like most operating systems, CiAO is designed with a
layered architecture, in which each layer is implemented
using the functionality of the layers below. The only ex-
ceptions to this are the aspects implementing architectural
policies, which may affect multiple layers.

On the coarse level, we have three layers. From bottom
up these are: the hardware access layer, the system layer
(the operating system itself), and the API layer.

3Because of legal issues, we do not claim full conformance; we have
not performed any formal conformance testing.

Figure 4: Structure of the CiAO-AS kernel

In CiAO, however, layers do not just serve conceptual
purposes, but also are a means of aspect-aware develop-
ment. With regard to the principle of visible transitions,
each layer is represented as a separate C++ namespace
in the implementation (hw::hal, os::krn, AS). Thereby,
cross-layer control-flow transitions (especially into and
out of os::krn) can be grasped by statically evaluable
pointcut expressions. The following expression, for in-
stance, yields all join points where a system-layer compo-
nent accesses the hardware:

pointcut pcOStoHW() = call("% hw::hal::%(...)")

&& within("% os::krn::%(...)");

5.2 The Kernel

In its full configuration, the system layer bears three
logical system components (displayed as columns in Fig-
ure 4):

1. The scheduler (Scheduler) takes care of the dis-
patching of tasks and the scheduling strategy.

2. The synchronization facility (Synchronizer) takes
care of the management of events, alarms, and the
underlying (hardware / software) counters.

3. The OS control facility (OSControl) provides ser-
vices for the controlled startup and shutdown of the
system and the management of OSEK/AUTOSAR
application modes.

However, as pointed out in Section 4.2, these classes are
sparse or even empty. If at all, they implement only a
minimal base of their respective concern. All further con-
cerns and variants (depicted in dark grey in Figure 4) are
brought into the system by aspects, most of which touch
multiple system components and system abstractions.

222

«policy aspect»
MixedPreemption

exec(...)

«slice»
MixedPreemption_Task

preemptable_

M
ixedP

reem
ption_Task

«policy aspect»
ResourceSupport_PIP

exec("getResource)
exec("releaseResource)

Scheduler

activate()
reschedule()
setNeedReschedule()

«extension aspect»
ResourceSupport

intro("Sched")
intro("Task")
...

«policy aspect»
FullPreemption

call(...)

Task

priority_

«slice»
ResourceSupport_Sched

getResource()
releaseResource()

«slice»
ResourceSupport_Task

occupied_
originalPri_

«policy aspect»
ResourceSupport_PCP

exec("getResource)
exec("releaseResource)

ResourceSupport_Task Resource-
Support_Sched

"getResource"

"releaseResource"

"activate"
"releaseResource"
"setEvent"

Figure 5: Interactions between optional policies and extensions of the CiAO scheduler

5.3 Aspect-Aware Development Applied
Figure 5 demonstrates how components, abstractions, and
aspects engage with each other on a concrete example.
The central element is the system component Scheduler.
However, Scheduler provides only the minimal base of
the scheduling facility, which is nonpreemptive schedul-
ing:

class Sched {

Tasklist ready_;

Task::Id running_;

public:

void activate(Task::Id whom);

void reschedule();

void setNeedReschedule();

...

};

Support for preemption and further abstractions is pro-
vided by additional extension aspects and policy aspects.

ResourceSupport is an example for an extension as-
pect. It extends the Task system abstraction Scheduler

system component with support for resources. For this
purpose, it introduces some state variables (occupied_,
originalPri_) and operations (getResource(), re-

leaseResource()).4 The elements to introduce are given
by respective extension slices:

slice struct ResourceSupport_Task {

ResourceMask occupied_;

Pri originalPri_;

};

4ResourceSupport furthermore extends the API on the inter-
face layer (it introduces the respective AUTOSAR-OS services
Get-/ReleaseResource() and the ResourceType abstraction) so that
applications can use the new functionality. For the sake of simplicity,
this cross-layer extension is omitted here.

slice struct ResourceSupport_Sched {

void getResource(Resource::Id resid) {...}

void releaseResource(Resource::Id resid) {...}

};

aspect ResourceSupport {

advice "Task" : slice ResourceSupport_Task;

advice "Scheduler" : slice ResourceSupport_Sched;

};

FullPreemption is an example for a policy aspect. It
implements the full-preemption policy as specified in [19],
according to which every point where a higher-priority
task may become ready is a potential point of preemption:

pointcut pcPreemptionPoints() =

"% Scheduler::activate(...)" ||

"% Scheduler::setEvent(...)" ||

"% Scheduler::releaseResource(...)";

aspect FullPreemption {

advice execution(pcPreemptionPoints()) : after() {

tjp->that()->reschedule();

} };

The named pointcut pcPreemptionPoints() (defined
in a global header file) specifies the potential preemp-
tion points. To these points, if present, the aspect
FullPreemption binds the invocation of reschedule().
This demonstrates the benefits of loose coupling by the
AOP mechanisms, which makes it easy to cope with
conceptually different, but technically interacting fea-
tures: In a fully-preemptive system without resource sup-
port, Scheduler::releaseResource() is just not present,
thus does not constitute a join point for FullPreemption.
However, if the ResourceSupport extension aspect is
part of the current configuration, Scheduler::release-

223

concern ex
te

ns
io

n

po
lic

y

up
ca

ll

ad
vi

ce

jo
in

po
in

ts

extension of | advice-based binding to

ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings
ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings
Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation
Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource
Event support 1 5 5 scheduler, API, task, alarm | trigger action JP
Full preemption 1 2 6 | 3 points of rescheduling
Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR
Wrong context check 1 1 s | s service calls
Interrupts disabled check 1 1 30 | all services except interrupt services
Invalid parameters check 1 1 25 | services with an OS object parameter
Error hook 1 2 30 scheduler | 29 services
Protection hook 1 1 2 2 API | default policy implementation
Startup / shutdown hook 1 2 2 | explicit hooks
Pre-task / post-task hook 1 2 2 | explicit hooks

Table 2: Selected CiAO-AS kernel concerns implemented as aspects with number of affected join points. Listed are
selected kernel concerns that are implemented as extension, policy, or upcall aspects, together with the related pieces of
advice (not including order advice), the affected number of join points, and a short explanation for the purpose of each
join point (separated by “|” into introductions of extension slices | advice-based binding).

Resource() implicitly triggers the advice. The separation
of policy invocation from mechanism implementation
makes it easy to integrate additional features, such as
the ResourceSupport_PCP aspect, which implements a
stack-based priority ceiling protocol for resources. As
AspectC++ inlines advice code at the matching join point,
this flexibility does not cause overhead at run time.

6 Discussion of Results

By following the principles of aspect-aware operating
system development, policies and mechanisms are cleanly
separated in the CiAO implementation. This separation
is a golden rule of system-software development, but in
practice difficult to achieve. While on the design level it
is usually possible to describe a policy in a well-separated
manner from underlying mechanisms, the implementation
often tends to be crosscutting. The reason is that many
system policies, such as the preemption policy, not only
depend on decisions but also on the specific points in the
control flow where these decisions are made. Here, the
modularization into aspects shows some clear advantages.

6.1 Modularization of the System

Table 2 displays an excerpt of the list of AUTOSAR-OS
concerns that are implemented as aspects in CiAO-AS.
The first three columns list for each concern the number of
extension, policy, and upcall aspects that implement the
concern. (The resource-support aspect and the protection-
hook aspect have both an extension and a policy facet.)

An interesting point is the realization of synergies by
means of AOP quantification. If for some concern the
number of pieces of advice is lower than the number of
affected join points, we have actually profited from the
AOP concept of quantification by being able to reuse
advice code over several join points. For 8 out of the 14
concerns listed in Table 2, this is the case.

The net amount of this profit depends on the type of
concern and aspect. Extension aspects typically cross-
cut heterogeneously with the implementation of other
concerns, which means that they have specific pieces of
advice for specific join points. These kinds of advice do
not leave much potential for synergies by quantification.
Policy aspects on the other hand – especially those for ar-
chitectural policies – tend to crosscut homogeneously with
the implementation of other concerns, which means that a
specific piece of advice targets many different join points
at once. In these cases, quantification creates significant
synergies.

For all concerns, however, the implementation is real-
ized as a distinct set of aspect modules, thereby reaching
complete encapsulation and separation of concerns. Thus,
any given feature configuration demanded by the appli-
cation developer can be fulfilled by only including the
implementation entities belonging to that configuration in
the configured source tree to be compiled.

6.2 Scalability of the System
Execution Time. The effects of the achieved configura-
bility also become visible in the CPU overhead. Table 3
displays the execution times of the micro-benchmark sce-

224

narios5 (a) to (j) and the comprehensive application (k)
on CiAO and a commercial OSEK implementation6. For
each scenario, we first configured both systems to sup-
port the smallest possible set of features (min colums
in Table 3). The differences between CiAO and OSEK
are considerable: CiAO is noticeably faster in all test
scenarios.

One reason for this is that CiAO provides a much better
configurability (and thereby granularity) than OSEK. As
the micro-benchmark scenarios utilize only subsets of the
OSEK/AUTOSAR features, this has a significant effect
on the resulting execution times. The smallest possible
configurations of the commercial OSEK still contained
a lot of unwanted functionality. The scheduler is syn-
chronized with ISRs, for instance; however, most of the
application scenarios do not include any ISRs that could
possibly interrupt the kernel.

To judge these effects, we performed additional mea-
surements with an “artifically enriched” version of CiAO
that provides the same amount of unwanted functionality
as OSEK (column full in Table 3). This reduces the per-
formance differences; however, CiAO is still faster in six
out of eleven test cases. This is most notable in test case
(k), which is a comprehensive application that actually
uses the full feature set.

Another reason for the relative advantage of CiAO is
that OSEK’s internal thread-abstraction implementation
is less efficient. This is mainly due to particularities of the
TriCore platform, which renders standard context-switch
implementations ported to that platform very inefficient.
CiAO, however, has a highly configurable and adaptable
thread abstraction, therefore not only providing for an
upward tailorability (i.e., to the needs of the application),
but also downward toward the deployment platform.

Memory Requirements. In embedded systems, tai-
lorability is crucial – especially with respect to memory
consumption, because RAM and ROM are typically lim-
ited to sizes of a few kilobytes. Since system software
does not directly contribute to the business value of an
embedded system, scalability is of particular importance
here. Thus, we also investigated how the memory require-
ments of the CiAO-AS kernel scale up with the number
of selected configurable features; the condensed results

5All variants were woven and compiled for the Infineon TriCore plat-
form with AC++-1.0PRE3 and TRICORE-G++-3.4.3 using -O3 -fno-rtti
-funit-at-a-time -ffunction-sections -Xlinker --gc-sections optimization
flags. Memory numbers are retrieved byte-exact from the linker-map
files. Run-time numbers are measured with a high-resolution hardware
trace unit (Lauterbach PowerTrace TC1796).

6ProOSEK is the leading commercial implementation of the OSEK
standard and part of the BMW and Audi/VW standard cores. We com-
pare CiAO against ProOSEK since (1) AUTOSAR is a true superset
of OSEK and (2) we do not yet have access to a complete AUTOSAR
implementation.

test scenario CiAO OSEK
min full min

(a) voluntary task switch 160 178 218
(b) forced task switch 108 127 280
(c) preemptive task switch 192 219 274
(d) system startup 194 194 399
(e) resource acquisition 19 56 54
(f) resource release 14 52 41
(g) resource release with preemption 240 326 294
(h) category 2 ISR latency 47 47 47
(i) event blocking with task switch 141 172 224
(j) event setting with preemption 194 232 201
(k) comprehensive application 748 748 1216

Table 3: Performance measurement results [clock ticks]

are depicted in Table 4. Listed are the deltas in code, data,
and BSS section size per feature that is added to the CiAO
base system.

Each Task object, for instance, takes 20 bytes of data
for the kernel task context (priority, state, function, stack,
interrupted flag) and 16 bytes (bss) for the underlying
CiAO thread abstraction structure. Aspects from the im-
plementation of other features, however, may extend the
size of the kernel task context. Resource support, for
instance, crosscuts with task management in the imple-
mentation of the Task structure, which it extends by 8
bytes to accommodate the occupied resources mask and
the original priority.

The cost of several features does not simply induce
a constant cost, but depends on the number of affected
join points, which in turn can depend on the presence
of other features, as explained in Section 5.3 with the
example of full preemption and resource support. This
effect underlines again the flexibility of loose coupling by
advice-based binding.

7 Experiences with the Approach

The CiAO results show that the approach of aspect-aware
operating-system development is both feasible and ben-
eficial for the class of configurable embedded operating
systems. The challenge was to implement a system in
which almost everything is configurable. In the following,
we describe our experience with the approach.

7.1 Extensibility

We are convinced that the three design principles of
aspect-aware operating-system development (loose cou-
pling, visible transitions, minimal extensions) also lead to
an easy extensibility of the system for new, unanticipated
features. While it is generally difficult to prove the sound-
ness of an approach for unanticipated change, we have at
least some evidence that our approach has clear benefits

225

feature with feature or instance text data bss

Base system (OS control and tasks)
per task + func + 20 + 16 + stack
per application mode 0 + 4 0

ISR cat. 1 support 0 0 0
per ISR +func 0 0
per disable–enable + 4 0 0

Resource support + 128 0 0
per resource 0 + 4 0
per task 0 + 8 0

Event support + 280 0 0
per task 0 + 8 0
per alarm 0 + 12 0

Full preemption 0 0 0
per join point + 12 0 0

Mixed preemption 0 0 0
per join point + 44 0 0
per task 0 + 4 0

Wrong context check 0 0 0
per void join point 0 0 0
per StatusType join point + 8 0 0

Interrupts disabled check 0 0 0
per join point + 64 0 0

Invalid parameters check 0 0 0
per join point + 36 0 0

Error hook 0 0 + 4
per join point + 54 0 0

Startup hook or shutdown hook 0 0 0
Pre-task hook or post-task hook 0 0 0

Table 4: Scalability of CiAO’s memory footprint. Listed
are the increases in static memory demands [bytes] of
selected configurable CiAO features.

here:
In a specific real-time application project that we im-

plemented using CiAO, minimal and deterministic event-
processing latencies were crucial. The underlying hard-
ware platform was the Infineon TriCore, which actually
is a heterogeneous multi-processor-system-on-chip that
comes with an integrated peripheral control processor
(PCP). This freely-programmable co-processor is able to
handle interrupts independently of the main processor.
We decided to extend CiAO in a way that the PCP pre-
handles all hardware events (interrupts) in order to map
them to activations of respective software tasks, thereby
preventing the real-time problem of rate-monotonic prior-
ity inversion [8]. This way, the CPU is only interrupted
when there actually is a control flow of a higher priority
than the currently executing one ready to be dispatched.

This relatively complex and unanticipated extension
could nevertheless be integrated into CiAO by a sin-
gle extension aspect, which is shown in Figure 6. The
PCP_Extension aspect is itself a minimal extension; its
implementation profited especially from the fact that all
other CiAO components are designed according to the
principle of visible transitions. This ensures here that all
relevant transitions of the CPU, such as when the kernel
is entered or left (lines 9 and 14, respectively) or when

the running CPU task is about to be preempted (line 17),
are available as statically evaluable and unambigious join
points to which the aspect can bind.

Note, that the aspect in Figure 6 is basically the com-
plete code for that extension, except for some initializa-
tion code (10 lines of code) and the PCP code, which is
written in assembly language due to the lack of a C/C++
compiler for the PCP instruction set.

7.2 The Role of Language
We think that the expressiveness of the base language (in
our case C++) plays an important role for the effective-
ness of the approach. Thanks to modularization through
namespaces and classes, C++ has some clear advantages
over C with respect to visible transitions: the more of the
base program’s purpose and semantics is expressed in its
syntactic structure, the more unambigious and “semanti-
cally rich” join points are available to which the aspects
can bind.

Note, however, that even though CiAO is using C++, it
is not developed in an object-oriented manner. We used
C++ as a purely static language and stayed away from any
language feature that induces a run-time overhead, such as
virtual functions, exceptions, run-time type information,
and automatic construction of global variables.

7.3 Technical Issues
Aspects for Low-Level Code. A recurring challenge in
the development of CiAO was that the implementation of
fundamental low-level OS abstractions, such as interrupt
handlers or the thread dispatcher, requires more control
over the resulting machine code than is guaranteed by
the semantics of ISO C++. Such functions are typically
(1) written entirely in external assembly files or (2) use a
mixture of inline assembly and nonstandard language ex-
tensions (such as __attribute__((interrupt)) in gcc).
For the sake of visible transitions, we generally opted
for (2). However, the resulting join points often have
to be considered as fragile – if advice is given to, for
instance, the context switch function, the transforma-
tions performed by the aspect weaver might break the
programmer’s implicit assumptions about register us-
age or the stack layout. The workaround we came up
with for these cases is to provide explicit join points
to which the aspects can bind instead. Technically, an
explicit join point is represented by an empty inline
function that is invoked from the fragile code when
the execution context is safe. CiAO’s context switch
functionality, for instance, exposes four explicit join
points to which aspects can bind: before_CPURelease(),
before_LastCPURelease(), after_CPUReceive(), and
after_FirstCPUReceive(). Because of function inlin-

226

1 aspect PCP_Extension {
2 advice execution("void hw::init()") : after() {
3 PCP::init();
4 }
5 advice execution("% Scheduler::setRunning(...)") :
6 before() {
7 PCP::setPrio(os::krn::Task::getPri(tjp->args<0>()));
8 }
9 advice execution("% enterKernel(...)") : after() {

10 // wait until PCP has left kernel (Peterson)
11 PCP_FLAG0 = 1; PCP_TURN = 1;
12 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}
13 }
14 advice execution("% leaveKernel(...)") : before() {
15 PCP_FLAG0 = 0;
16 }
17 advice execution("% AST0::ast(...)") : around() {
18 // AST0::ast() is the AST handler that activates
19 // the scheduler (bound by an upcall aspect)
20

21 // wait until PCP has left kernel (Peterson)
22 PCP_FLAG0 = 1; PCP_TURN = 1;
23 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}
24

25 // proceed to aspect that activates scheduler
26 tjp->proceed();
27 PCP_FLAG0 = 0;
28 }
29 advice execution("% Scheduler::schedule(...)") : after() {
30 // write priority of running task to PCP memory
31 PCP::setPrio(Task::getPri(
32 Scheduler::Inst().getRunning()));
33 }
34 };

Figure 6: PCP co-processor extension aspect

ing, this does not induce an overhead and the aspect code
is still embedded directly into the context switch function-
ality.

Aspect–Aspect Interdependencies. In several cases
we had to deal with subtle interdependencies between
aspects that affect the same join points. For instance,
the following aspect implements the ErrorHook feature,
which exempts the application developer from manually
testing the result code of OS services:

aspect ErrorHook {

advice execution(pcOSServices() ...) : after() {

if(*tjp->result() != E_OK)

invokeErrorHook(*tjp->result());

} };

Later we figured that, depending on the configuration,
there are also other aspects that modify the result code.
To fulfill its specification, ErrorHook has to be invoked
after these other aspects. Whereas detecting such interde-
pendencies was sometimes tricky (especially those that
emerge only in certain configurations), they were gener-
ally easy to resolve by order advice:

advice execution(pcOSServices() ...) : order(

"ErrorHook", !"ErrorHook");

This type of advice allows the developer to define a (par-
tial) order of aspect invocation for a pointcut. The prece-
dence of aspects is specified as a sequence of match ex-
pressions, which are evaluated against all aspect identi-
fiers. In the above example, the aspect yielded by the
expression "ErrorHook" has precedence (is invoked last
of all aspects that give after advice to the pointcut) over
all other aspects (the result of !"ErrorHook"). Very help-
ful was that order advice does not necessarily have to be
given by one of the affected aspects, instead it can be
given by any aspect. This made it relatively easy to en-
capsulate and deal with configuration-dependent ordering
constraints.

Join-Point Traceability. An important factor for the
development were effective tools for join-point traceabil-
ity. From the viewpoint of an aspect developer, the set of
join points offered by some class implementation consti-
tutes an interface. However, these interfaces are “implicit
at best” [23]; a simple refactoring, such as renaming a
method, might silently change the set of join points and
thereby break some aspect. To prevent such situations, we
used the Eclipse-based AspectC++ Development Toolkit
(ACDT7), which provides a join-point–set delta analysis
(very helpful after updating from the repository) and visu-
alizes code that is affected by aspects. Thereby, unwanted
side effects of code changes could be detected relatively
easy.

8 Summary and Conclusions

Operating systems for the domain of resource-constrained
embedded systems have to be highly configurable. Typ-
ically, such configurability is implemented “in line” by
means of the C preprocessor. However, due to feature
interdependencies and the fact that system policies and
system mechanisms tend to crosscut with each other in
the implementation, this approach leads to “#ifdef hell”
and a bad separation of concerns. Our analysis of the
AUTOSAR-OS specification revealed that these effects
can already be found in the requirements; they are an in-
herent phenomenon of complex systems. If fundamental
architectural policies have to be provided as configurable
features, “#ifdef hell” appears to be unavoidable.

We showed that a pragmatic application of aspect-
oriented programming (AOP) provides means for solving
these issues: The advice mechanism of AOP effectively
reverses the direction of feature integration; an (optional)
feature that is implemented as an aspect integrates itself
into the base code. Thanks to AOP’s pointcut expressions,
the integration of features through join points is declara-
tive – it scales implicitly with the presense or absence of

7http://acdt.aspectc.org/

227

http://acdt.aspectc.org/

other features. A key prerequisite is, however, that the sys-
tem’s implementation exhibits enough unambigious and
statically evaluable join points. This is achieved by the
three design principles of aspect-aware operating-system
development.

By following this design approach in the development
of CiAO, we did not only achieve the complete separation
of concerns in the code, but also excellent configurability
and scalability in the resulting system. We hope that our
results encourage developers who start from scratch with
a piece of configurable system software to follow the
guidelines described in this paper.

Acknowledgments

We wish to thank the anonymous reviewers for EuroSys
and USENIX for their helpful comments. Special thanks
go to Robert Grimm, whose demanding and encouraging
shepherding helped us tremendously to improve content
and clarity of this paper.

References
[1] ÅBERG, R. A., LAWALL, J. L., SÜDHOLT, M., MULLER, G.,

AND MEUR, A.-F. L. On the automatic evolution of an OS
kernel using temporal logic and AOP. In 18th IEEE Int. Conf. on
Automated Software Engineering (ASE ’03) (Montreal, Canada,
Mar. 2003), IEEE, pp. 196–204.

[2] AUTOSAR. Specification of operating system (version 2.0.1).
Tech. rep., Automotive Open System Architecture GbR, June
2006.

[3] AUTOSAR homepage. http://www.autosar.org/, visited 2009-
03-26.

[4] BEUCHE, D. Variant management with pure::variants. Tech.
rep., pure-systems GmbH, 2006. http://www.pure-systems.

com/fileadmin/downloads/pv-whitepaper-en-04.pdf, visited
2009-03-26.

[5] BROY, M. Challenges in automotive software engineering. In
28th Int. Conf. on Software Engineering (ICSE ’06) (New York,
NY, USA, 2006), ACM, pp. 33–42.

[6] CAMPBELL, R., ISLAM, N., MADANY, P., AND RAILA, D.
Designing and implementing Choices: An object-oriented system
in C++. CACM 36, 9 (1993).

[7] COADY, Y., AND KICZALES, G. Back to the future: A retroac-
tive study of aspect evolution in operating system code. In 2nd
Int. Conf. on Aspect-Oriented Software Development (AOSD ’03)
(Boston, MA, USA, Mar. 2003), M. Akşit, Ed., ACM, pp. 50–59.

[8] DEL FOYO, L. E. L., MEJIA-ALVAREZ, P., AND DE NIZ, D.
Predictable interrupt management for real time kernels over con-
ventional PC hardware. In 12th IEEE Int. Symp. on Real-Time
and Embedded Technology and Applications (RTAS ’06) (Los
Alamitos, CA, USA, 2006), IEEE, pp. 14–23.

[9] ENGEL, M., AND FREISLEBEN, B. TOSKANA: a toolkit for
operating system kernel aspects. In Transactions on AOSD II
(2006), A. Rashid and M. Aksit, Eds., no. 4242 in LNCS, Springer,
pp. 182–226.

[10] FILMAN, R. E., ELRAD, T., CLARKE, S., AND AKSIT, M.
Aspect-Oriented Software Development. AW, 2005.

[11] FILMAN, R. E., AND FRIEDMAN, D. P. Aspect-oriented program-
ming is quantification and obliviousness. In W’shop on Advanced
SoC (OOPSLA ’00) (Oct. 2000).

[12] FIUCZYNSKI, M., GRIMM, R., COADY, Y., AND WALKER, D.
patch(1) considered harmful. In 10th W’shop on Hot Topics in
Operating Systems (HotOS ’05) (2005), USENIX.

[13] HOFER, W., LOHMANN, D., AND SCHRÖDER-PREIKSCHAT, W.
Concern impact analysis in configurable system software—the
AUTOSAR OS case. In 7th AOSD W’shop on Aspects, Compo-
nents, and Patterns for Infrastructure Software (AOSD-ACP4IS

’08) (New York, NY, USA, Mar. 2008), ACM, pp. 1–6.

[14] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking the
software stack. SIGOPS Oper. Syst. Rev. 41, 2 (2007), 37–49.

[15] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C.,
LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J. Aspect-
oriented programming. In 11th Eur. Conf. on OOP (ECOOP ’97)
(June 1997), M. Aksit and S. Matsuoka, Eds., vol. 1241 of LNCS,
Springer, pp. 220–242.

[16] LOHMANN, D. Aspect Awareness in the Development of Config-
urable System Software. PhD thesis, Friedrich-Alexander Univer-
sity Erlangen-Nuremberg, 2009.

[17] LOHMANN, D., SCHELER, F., TARTLER, R., SPINCZYK, O.,
AND SCHRÖDER-PREIKSCHAT, W. A quantitative analysis of
aspects in the eCos kernel. In ACM SIGOPS/EuroSys Eur. Conf.
on Computer Systems 2006 (EuroSys ’06) (New York, NY, USA,
Apr. 2006), ACM, pp. 191–204.

[18] MASSA, A. Embedded Software Development with eCos. New
Riders, 2002.

[19] OSEK/VDX GROUP. Operating system specification 2.2.3. Tech.
rep., OSEK/VDX Group, Feb. 2005. http://portal.osek-vdx.
org/files/pdf/specs/os223.pdf, visited 2009-03-26.

[20] PADIOLEAU, Y., LAWALL, J. L., MULLER, G., AND HANSEN,
R. R. Documenting and automating collateral evolutions in Linux
device drivers. In ACM SIGOPS/EuroSys Eur. Conf. on Computer
Systems 2008 (EuroSys ’08) (Glasgow, Scotland, Mar. 2008).

[21] REYNOLDS, A., FIUCZYNSKI, M. E., AND GRIMM, R. On the
feasibility of an AOSD approach to Linux kernel extensions. In
7th AOSD W’shop on Aspects, Components, and Patterns for In-
frastructure Software (AOSD-ACP4IS ’08) (New York, NY, USA,
Mar. 2008), ACM, pp. 1–7.

[22] SPINCZYK, O., AND LOHMANN, D. The design and implementa-
tion of AspectC++. Knowledge-Based Systems, Special Issue on
Techniques to Produce Intelligent Secure Software 20, 7 (2007),
636–651.

[23] STEIMANN, F. The paradoxical success of aspect-oriented pro-
gramming. In 21st ACM Conf. on OOP, Systems, Languages, and
Applications (OOPSLA ’06) (New York, NY, USA, 2006), ACM,
pp. 481–497.

[24] TURLEY, J. The two percent solution. embedded.com (Dec.
2002). http://www.embedded.com/story/OEG20021217S0039,
visited 2009-03-26.

[25] YANAGISAWA, Y., KOURAI, K., CHIBA, S., AND ISHIKAWA,
R. A dynamic aspect-oriented system for OS kernels. In 6th Int.
Conf. on Generative Programming and Component Engineering
(GPCE ’06) (New York, NY, USA, Oct. 2006), ACM, pp. 69–78.

[26] YOKOTE, Y. The Apertos reflective operating system: the concept
and its implementation. In 7th ACM Conf. on OOP, Systems,
Languages, and Applications (OOPSLA ’92) (New York, NY,
USA, 1992), ACM, pp. 414–434.

228

http://www.autosar.org/
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://www.embedded.com/story/OEG20021217S0039

	Introduction
	Operating Systems for Small Embedded Systems
	The Price of Configurability
	Aspect-Oriented Programming
	Contribution and Outline

	Problem Analysis
	Why #ifdef Hell Appears to Be Unavoidable
	Why AOP Is a Promising Solution

	Related Work
	Aspect-Aware Operating-System Development
	Design Principles
	Role and Types of Classes and Aspects

	Case Study: CiAO-AS
	Overview
	The Kernel
	Aspect-Aware Development Applied

	Discussion of Results
	Modularization of the System
	Scalability of the System

	Experiences with the Approach
	Extensibility
	The Role of Language
	Technical Issues

	Summary and Conclusions

