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ABSTRACT
With more than 11,000 optional and alternative features, the Linux
kernel is a highly configurable piece of software. Linux is generally
perceived as a textbook example for preprocessor-based product
derivation, but more than 65 percent of all features are actually
handled by the build system. Hence, variability-aware static analysis
tools have to take the build system into account.

However, extracting variability information from the build system
is difficult due to the declarative and turing-complete MAKE lan-
guage. Existing approaches based on text processing do not cover
this challenges and tend to be tailored to a specific Linux version
and architecture. This renders them practically unusable as a basis
for variability-aware tool support – Linux is a moving target!

We describe a robust approach for extracting implementation
variability from the Linux build system. Instead of extracting the
variability information by a text-based analysis of all build scripts,
our approach exploits the build system itself to produce this infor-
mation. As our results show, our approach is robust and works for
all versions and architectures from the (git-)history of Linux.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.2.9
[Management]: Software configuration management

General Terms
Design, Experimentation, Management

Keywords
Configurability, Maintenance, Linux, Build Systems, Kbuild, Static
Analysis, VAMOS

1. INTRODUCTION
System-software product lines usually employ compile-time con-

figuration as a simple and widely used technique for tailoring with
respect to a broad range of supported hardware architectures and
application domains. A prominent example is the Linux kernel.
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Figure 1: Statistic how the features, declared in KCONFIG, are
referenced by source-code and Makefiles in Linux v3.2

The Linux KCONFIG feature model provides more than 11,000 con-
figurable features in Linux v3.2. The thereby described intended
variability is implemented by 28,000 source files containing 84,000
#ifdef-blocks.

In previous work, we could show that intended and actually im-
plemented variability (i.e., the KCONFIG feature model and the
variability points in the code) do not necessarily match. However,
many configurability-related defects, such as dead #ifdef-code, and
bugs, can be found upfront by better tool support [29]. This eventu-
ally has led to (accepted) fixes for twenty new bugs and the removal
of 5,000 superfluous lines of #ifdef-code in Linux v2.6.36. How-
ever, these numbers are just the tip of an iceberg. The lesson to be
learned from this is: Variability has to be understood, analyzed, and
tested as a system property in its own respect. For a system-software
product line at the size of Linux, this requires profound and robust
tool support.

1.1 The Role of the Build System
A crucial building block for variability-aware static checking

tools are reliable extractors that transform the actually implemented
variability from their various sources into a formal model. Ex-
isting studies (including our own) have mostly focused on the
C Preprocessor (CPP) as a means to implement features in Linux [13,
14, 25, 28, 29]; however, in Linux, variability is mostly implemented
in a more coarse-grained manner (Figure 1): Only a third (33.9%)
of all features do affect the work of the CPP, that is, have an effect
on the sub-file level. On the other hand, two third (66.9%) of all
features are referenced in the build system (KBUILD). These fea-
tures have an effect on the selection of whole files into the build
process. Hence, we need robust tools to extract the implementation
variability from the Linux build system.
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1.2 Related Work in a Nutshell
Approaches to extract implementation variability from KBUILD

have previously been published by Berger et al. [4] and Nadi and
Holt [18]. A common characteristic of both approaches is that they
rely on text processing of makefiles, that is, they employ parsing
(Berger et al.) or clever regular expressions (Nadi and Holt) to extract
the presence implications for Linux source files from the build
scripts. However, the underlying MAKE language is a declarative
and turing-complete language; its advanced features, such as the
$(eval), $(shell), or $(wildcard) functions, make it notoriously
difficult to analyze. If these features are used, a text-processing–
based approach quickly hits its limits, since the enclosed fragments
may be for instance arbitrary shell command.

Even worse from a practical point of view is, however, that the
existing approaches are brittle with respect to evolutionary changes
in the KBUILD system itself: To achieve good results, they have to
provide explicit support for many corner cases of KBUILD analysis,
which effectively tailors them for a specific Linux version and ar-
chitecture. While this might be perfectly acceptable if the goal is to
analyze a certain Linux version, it renders them as practically unus-
able as a basis for general variability-aware tool support – Linux is
a moving target.

1.3 About this Paper
The contribution of this paper is a robust approach for extracting

implementation variability from the Linux KBUILD system. Instead
of text processing, our approach exploits the build system itself to
produce this information. Thereby, our approach is not only simple
to implement, but also robust with respect to evolutionary changes
and the usage of advanced MAKE features. Our evaluation results
show that our approach works for all versions and architectures from
the (git-)history of Linux and reliably extracts presence conditions
for more than 93% percent of all source code files. In two appli-
cations, we show that the presented implementation significantly
improves our previous results on configuration defects [29] and
configuration coverage (CC) [28].

The context of this work is the VAMOS 1 project, funded by the
German Research Council (DFG). The goal is to provide practical
tools for analysis and management of variability in system software.
So far the produced tool hav produced over 100 patches that have
been integrated into the Linux mainline kernel.

The remainder of this paper is structured as following: In Sec-
tion 2, we introduce the background and technical context and
analyze the challenges in build-system analysis. This is followed
by the description of the basics of our approach in Section 3. Then,
we analyze the results in Section 4, followed by two applications in
Section 5. After discussing the results in Section 6 and an overview
over further related work in Section 7, the paper concludes with
Section 8.

2. VARIABILITY IN LINUX
The scattered nature of variability and variability implementation

in Linux makes holistic reasoning challenging. In practice, the
analysis of the different models, languages and representations of
variability requires very specialized and sophisticated extraction
tools. A solid understanding of how the Linux build system KBUILD
and the configuration tool KCONFIG play together is instrumental to
correctly relate variability implementations from different extraction
tools. This subsection analyzes the mechanics of KBUILD and
identifies the challenges for an automated extraction of variability.

1Variability Management in Operating Systems
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Figure 2: Overview of the technical realization of software vari-
ability in Linux. The coarse-grained varibility implemented in
makefile dominates fine-grained varibility in CPP code.

2.1 Levels of Variability
In a nutshell, static configurability is specified and implemented in

Linux top-down on three major levels, for which Figure 1 illustrates
their quantitative relevance:

! The configuration system (KCONFIG) defines the available
features and their constraints (intended variability) and pro-
vides an interface to specify and manage a concrete (product)
configuration.

" The build system (KBUILD) implements coarse-grained vari-
ability in the code by inclusion and exclusion of complete
translation units in the build process. The produced build
products include object files, the bootable kernel image and
loadable kernel modules (LKMs).

# The CPP implements fine-grained variability by inclusion
or exclusion of #ifdef-blocks within the files selected by
KBUILD.

Figure 2 describes the Linux toolchain that drives the compilation
process. At the top, the Linux feature model defines the (inten-
tional) product line variability [16, 20]. Here, the user selects a
concrete product configuration with the KCONFIG tool and saves
his selection to a file named .config. The Linux build system
KBUILD transforms the thereby encoded feature selection into two
further representations: An auto.conf file in MAKE-syntax and an
autoconf.h file in CPP syntax (Figure 3). Technically, these repre-
sentations control the (extensional) software variability [16, 27] in
makefiles and C source code during the compilation process.

For the CPP representation, an additional normalization step is
applied for tristate features: Many features, especially device drivers,
can be configured as compiled into kernel, compiled as loadable
kernel module or disabled. To ease the use in #ifdef statements,
KCONFIG maps this to boolean flags by inserting an additional CPP
variable with the _MODULE, suffix into autoconf.h for each tristate
feature (Figure 3).
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(a) KCONFIG output: .config

SMP=n
PM=y
APM=m

(b) MAKE representation: auto.conf

CONFIG_SMP := n
CONFIG_PM := y
CONFIG_APM := m

(c) CPP representation: autoconf.h

#undef CONFIG_SMP
#define CONFIG_PM 1
#undef CONFIG_APM
#define CONFIG_APM_MODULE 1

Figure 3: Representation of a feature selection

In Step ", the MAKE representation of the current feature se-
lection is then used by KBUILD to implement the coarse-grained
variability on a per-file basis. All thereby included translation units
are passed to the compiler, which in turn uses the CPP representation
during preprocessing (Step #) to implement the fine-grained con-
figurability. The invocation of the compiler and linker is, however,
controlled by KBUILD,2 which again uses the MAKE representation
of the current feature selection to construct compiler and linker
options used in Step $ for creating the build goals: The vmlinuz
kernel image and the library of loadable driver objects.

2.2 Variability Implementation in Kbuild
As detailed in the previous section, KBUILD gets a file auto.conf

that describes all selected features and their values in MAKE syntax.
KBUILD then resolves which file implements what feature, deter-
mines the set of translation units that are relevant for a given config-
uration selection, and invokes the compiler for each translation unit
with potentially configuration-dependent settings and compilation
flags. Internally, KBUILD employs GNU MAKE [26] to control the
actual build process; in Linux v3.2 the mapping from features to
translation units is encoded in 1,568 makefiles that are spread across
the source tree. However, Linux makefiles look quite different from
typical text-book makefiles as they employ KBUILD-specific idioms
to implement Linux-specific (variability) requirements, such as [11]:

• Optional features: Many features, such as drivers, are
present (or absent) by deciding about the inclusion of their
respective implementation files.

• Tristate features: Linux allows most drivers to be compiled
either statically into the kernel or as LKM.

• Loose coupling: The decision about what set of files is used
for a given configuration can be specified at various levels of
granularity (such as disabling a complete subsystem by not
descending a subdirectory).

In the following, we provide further details on these idioms, as they
are relevant for this paper.

2.2.1 Optional and Tristate Features
In all makefile fragments, we can find two variables that collect

selected and unselected object files: The make variable obj-y con-
tains the list of all files that are to be statically compiled into the
2The exact mechanisms are fairly technical and have already been
discussed elsewhere (e.g., [11, 17]).

kernel. Similarly, the variable obj-m collects all object files that will
be compiled as LKM. Object files in the make variable obj-n are
not considered for compilation. The suffixes {y,m,n} are added
by the expansion of variables from auto.conf (Figure 3).3 This
pattern for managing variability with KBUILD is best illustrated by
a concrete example:

1 obj-y += fork.o
2 obj-$(CONFIG_SMP) += spinlock.o
3 obj-$(CONFIG_APM) += apm.o

In line 1, the target fork.o is unconditionally added to the list
obj-y, which instructs KBUILD to compile and link the file directly
into the kernel. In line 2, the variable CONFIG_SMP, which is taken
from the KCONFIG selection, controls the compilation of the target
spinlock.o. The variable derives from the feature SMP, which is
declared as boolean. Therefore, spinlock.o cannot be compiled
as LKM. When the feature selection from Figure 3 (b) is applied,
CONFIG_SMP has the value n, spinlock.o is added to obj-n and
therefore not compiled. In line 3 the file apm.o is handled in a
similar way to spinlock.o. Because the enabling feature APM is
declared as tristate, it might take value m. With the feature selection
from Figure 3 (b), APM has the value m, therefore apm.o is added to
obj-m and compiled as LKM.

Note that instead of mentioning the source files, the makefile
rules reference only the resulting build products. The mapping to
source files is implemented by implicit rules (for details, cf. [26,
Chapter 10]). This mapping has to be considered for any kind of
makefile variability analysis.

2.2.2 Loose Coupling
Programmers specify in KBUILD makefiles the conditions that

lead to the inclusion of source files in the compilation process. As
shown above, this commonly happens by mentioning the respective
build products in the special targets obj-y and obj-m. This works
for the majority of cases, where a feature is implemented by a
single implementation file. However, in order to control complete
subsystems, which generally consist of several implementation files,
the programmer can also include subdirectories:

obj-$(CONFIG_PM) += power/

This line adds the subdirectory power conditionally, depending on
the selection of the feature PM (power management). For each listed
subdirectory, its containing Makefile is evaluated during the build
process. This allows a more coarse-grained control of source file
compilation with KCONFIG configuration options. As we will show
later in this paper, the inclusion of most source files in Linux is
controlled by enabling a single configuration option.

2.3 Challenges in Build-System Analysis
While the selection process described in Section 2.2 is conceptu-

ally simple, an automated analysis is challenging because of engi-
neering reasons. Since KBUILD is implemented with the MAKE tool,
the kernel developer has many possibilities to express constraints.
Not only is MAKE a full-blown programming language that supports
a wide range of operations, including string modifications, condition-
als, and meta-programming, it also allows the execution of arbitrary
further programs ("shell escapes"). The Linux coding guidelines
do not pose any restrictions on what MAKE features should be used

3The idea of this pattern dates back to 1997 and was proposed
by Micheal Elizabeth Castain under the working title "Dancing
Makefiles" (https://lkml.org/lkml/1997/1/29/1). It was
globally integrated into the kernel makefiles by Linus Torvalds
shortly before the release of Linux v2.4.
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in KBUILD. This subsection presents a few selected examples of
constructs that are present in the build system of Linux and are far
more expressive than the standard constructs.

The following example is taken from arch/x86/kvm/Makefile
and uses the function addprefix:

obj-$(CONFIG_KVM_ASYNC_PF) += \
$(addprefix ../../../virt/kvm/, async_pf.o)

The addprefix function takes an arbitrary amount of arguments,
prepends its first argument to the remaining ones, and returns them.
In this case using addprefix is not really necessary, because there
is only one additional argument and the whole expression is equal to
../../../virt/kvm/async_pf.o. Nevertheless, this case requires
special handling with a text-processing–based approach.

In KBUILD, programmers also use generative programming
techniques and loop constructs, like in this excerpt taken from
arch/ia64/kernel/Makefile:

ASM_PARAVIRT_OBJS = ivt.o entry.o fsys.o
define paravirtualized_native
AFLAGS_$(1) += -D__IA64_ASM_PARAVIRTUALIZED_NATIVE
[...]
extra-y += pvchk-$(1)
endef
$(foreach obj,$(ASM_PARAVIRT_OBJS),$(eval $(call

paravirtualized_native,$(obj))))

Here, a list of implementation files (ivt.S, entry.S and fsys.S) not
only need to be included, but also require special compilation flags.
In this example, the macro paravirtualized_native is evaluated
for all three implementation files by the MAKE tool at compilation-
time. Again, for a text-processing–based approach, this corner case
is challenging to implement in a general manner.

Even worse is the shell function, which makes it possible to
spawn an arbitrary external program to let it control (parts of) the
compilation process.

The text-processing–based approaches [4, 18] both fail on the
examples shown above. Luckily – and this comes to their rescue
– these MAKE language features are currently not used very fre-
quently in KBUILD. However, they are used4 and their usage is
not discouraged by Linux coding guidelines. On the longer term,
this implies a danger regarding the robustness of text processing
as a means to extract variability information from the Linux build
system. In the following, we therefore devise a pragmatic approach
that, conceptually and practically, is robust with respect to these
challenges.

3. EXPERIMENTAL PROBING FOR
BUILD-SYSTEM VARIABILITY

In order to enable variability analyses, such as consistency checks
with the KCONFIG feature model [29] or variability aware static anal-
ysis with existing tools [28], the results of the variability extractors
may require a normalization step. Literature proposes propositional
formulas as lingua franca for combining the different sources of
variability (e.g., [4, 13, 15, 18]). Similar to [4, 18] , we extract
propositional formulas that model the behavior of KBUILD, similar
as we did in previous work for the CPP [24].

The set of files that KBUILD produces during the compilation
process depends on selection of features done by KCONFIG. The
basic idea of our approach is to (partially) execute KBUILD with
different feature selections and observe the behavioral changes. This

4In Linux v3.2, we count for shell: 127, foreach: 16, eval: 3, and
addprefix: 88 occurrences.

allows to correlate variability points in the feature model with the
produced build products.

The presence implication of a source file is determined by the
feature selections that include the file in the compilation process.
Therefore, in order to extract the presence implication for a specific
source file, all feature selections that enable this file need to be
recorded. Our approach exploits this observation and determines for
each file all selections that include the file during the compilation
process.

Instead of parsing the makefile, our approach is based on "clever
probing": Basically, we "ask" the build system for each feature
which files it would built. The basic idea is to investigate a feature
selection Sbase, which uses the set Fbase during the compilation
process. Now we add one additional feature f1 to it. The new
feature selection S1 := Sbase + {f1} now compiles the set of files
F1. For every file that is in F1 but not in Fbase we have found a
feature selection that enables this particular file.

3.1 Subdirectories
As discussed in Section 2.2.2, not necessarily all subdirectories in

the Linux source tree are traversed at compilation time. Subdirecto-
ries are therefore not only used to organize files for the programmer,
but also for implementing build-system variability. We address this
in our approach by treating subdirectories that appear in the file
sets Fn+1 in a special way: For each subdirectory we determine the
condition under which the compilation process traverses it. If the
condition is non-trivial, then it is taken as precondition (the "base
expression") to all presence condition of its included files. After pro-
cessing all files in the file set Fn, each of the included subdirectories
is processed recursively.

3.2 From Feature Selections to File Sets
Our approach relies on the following primitive operation to find

the file set and all considered subdirectories that are associated to a
feature selection:

list : Selection !−→ (FileSet, SubDirs) (1)

This primitive is essential for any build system that implements
variability. There are several options how this can be implemented
for a given build system. As a last resort, the mapping could be
extracted from build traces of a real build process [cf. 2]. However, in
order to avoid unnecessary compilation steps, an efficient extraction
of this mapping is essential.

For KBUILD, our implementation traverses the source tree in the
same way the regular compilation process. Hereby, MAKE collects
all selected files and the visited subdirectories into lists (technically
MAKE variables), which are used internally to drive the compilation.
We make use of these implementation internals and therefore exploit
the built-in KBUILD functionality to ensure an accurate operation of
the list primitive. The full implementation is available for download
from the VAMOS website [30].

As an additional optimization, our implementation ignores logical
constraints that stem from KCONFIG declarations, which allows us
to reduce the number of necessary probing steps. This optimization
would not have been possible to implement using build traces, which
(successfully) compiles and links only valid configurations.

3.3 Base Selection and Added Features
The algorithm starts with the empty selection S∅ as starting point

for the recursion, which serves as base point for the file set and
subdirectory differences. The empty selection contains no selected
feature at all; it is therefore not a valid configuration according
to the KCONFIG model. This base file set only includes files that
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are included in every configuration. One example of such a file is
kernel/fork.c, which is essential for the process creation and
therefore needed in every configuration.

(Fbase, Dbase) = list(S∅) (2)

The files Fbase selected by S∅ are unconditionally compiled into
the kernel. In Linux v3.2 arch-x86, our implementation detects
334 such unconditional files. S∅ also selects the subdirectories
Dbase, which are the starting point for the build system during the
source tree traversal. The presented approach uses Fbase and Dbase
in the same manner as starting point.

In the process of adding single features to the base selection, it is
necessary to know which variables have to be considered. We exploit
the fact that the Linux source tree is organized hierarchically: Each
conditional subdirectory carries, in addition to the base selection,
a base directory dbase. All features referenced in the makefile of a
base directory are added to the list of features to probe.

features_in_dir : Directory !−→ FeatureSet (3)

For KBUILD, the features_in_dir function is straight-forward to
implement with regular expressions that extract all referenced vari-
ables in the Makefile that start with CONFIG_. This is also some
sort of text processing, but in contrast to the competing approaches
[4, 18], we just extract the feature identifiers and not their (context-
dependent) semantics. Therefore, the features_in_dir function also
detects referential KCONFIG ↔ KBUILD defects, similar as de-
scribed by Nadi and Holt in [18]. By excluding undeclared config-
uration variables from the FeatureSet, we reduce the number of
necessary probing steps.

3.4 Build-System Probing
1: function KBUILDPROBE
2: vDirs ← empty set ! set of visited dirs
3: filePC ← empty map [ File → list [ Selection ]]
4: (Fbase, Dbase) = list(S∅)
5: for all dbase in Dbase do
6: KBuildProbeRecursion(dbase, S∅, Fbase)
7: end for
8: for all (file, selections) in filePC do
9: toPC(file, selections)

10: end for
11: end function

Figure 4: Starting-Point for the Build-System Probing

Figure 4 shows the recursion step over the source tree for probing
the file presence implications. The recursion is done only once
for each directory. In line 2, a set of already visited directories
is initialized. The resulting selections for each file is stored in
filePC, which holds a list of selections for each file (line 3). For
each directory that is considered by the empty selection S∅, we
start the recursion in line 6 to dig into the source tree beginning at
the directory. After all file sets have been calculated, the presence
implications for all source files are calculated by the helper function
toPC in line 9.

In Figure 5, the recursion step, which is executed for every subdi-
rectory that may be considered by KBUILD, is shown. The function
KBuildProbeRecursion takes three arguments: The first argument
dbase is the directory this function call should focus on. Sbase con-
tains the features that are necessary to visit dbase in the first place.
The third argument is the file set associated with Sbase. Our imple-

1: function KBUILDPROBERECURSION(dbase, Sbase, Fbase)
2: if dbase ∈ vDirs then ! already visited
3: return
4: end if
5: vDirs ← vDirs ∪ {dbase} ! mark as visited
6: features ← features_in_dir(dbase)
7: for all f in features do
8: Snew ← Sbase ∪ {f} ! add one feature
9: (Fnew, Dnew) ← list(Snew)

10: for all file in (Fnew − Fbase) do
11: filePC[file].append(Snew) ! new files found
12: end for
13: for all dir in (Dnew −Dbase) do
14: KBuildProbeRecursion(dir, Snew, Fnew)
15: end for
16: end for
17: end function

Figure 5: Recursion step in the Build-System Probing.

mentation avoids unnecessary recalculation of Fbase by caching the
result.

Lines 2 to 5 ensure that each directory is only visited once and the
recursion terminates in finite steps. The function features_in_dir
is called in line 6 to determine all features that are used in the
directory’s makefile. These features will be probed together with the
base selection against this Makefile. A new feature selection Snew

is created (line 8) as an extention to Sbase for each of these features.
For this feature selection, all considered files and subdirectories
are collected by a call to list in line 9. The difference between the
new file set and the old file set are all files that are additionally
enabled by the current feature. The feature selection is added in
line 11 to all additionally enabled files. Similar to this, we recurse
into the file system hierarchy for each newly detected directory in
line 14. The newly detected directory is used as base directory and
Snew, with the associated file set, as base selection. The conversion
from the feature selections to the presence implications for a file is
straightforward:

toPC(File, Selection) = File →
∨

S∈Sels




∧

f∈S

f



 (4)

Each selection is a conjunction of the set features that must be en-
abled in order satisfy the developer-specified KBUILD constraint
to compile the file. Multiple selections occur when there are mul-
tiple rules that require the source file to be compiled. In case of
multiple selections, all selections are disjuncted, because any of
these disjunction leads to the inclusion of the file in the compilation
process.

The resulting propositional formula can by simplified, for instance
by removing selections that are a full subset of another selection.

4. EVALUATION
In the following, we evaluate our approach and compare it to

the existing approaches. We start with a general description and
compare the three respective implementations, which is followed by
analyses regarding run time, robustness and coverage.

4.1 Implementation Overview

The GOLEM tool
We have implemented the algorithms from Section 3 into the GOLEM
tool which is part of our VAMOS [30] toolchain [28, 29]. The
implementation encompasses about 1,000 lines of Python code.
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The KBUILD specific probing primitives are implemented in two
additional "front-end" makefiles (about 120 lines of MAKE code),
so that not a single line in Linux had to be changed for the analysis.
The tools are freely available on the project website.

KBUILDMINER

KBUILDMINER by Berger and She [3] has been presented on a
poster at SPLC ’10 [5] and is further detailed in a technical report
[4]: A fuzzy parser transforms KBUILD makefiles into an abstract
syntax tree (AST), which is then transformed into presence condi-
tions. The implementation consists of about 1,400 lines of Scala
code and 450 lines of Java code. The tool, as well as a result set for
Linux v2.6.33.3, have been downloaded from [3]. Because this tool
requires manual modification of existing makefiles (the technical
report states that for Linux v2.6.28.6, 28 makefiles were adapted
manually [4]), it is not easily possible to apply it to arbitrary versions
of Linux.

The UNDERTAKER Extension by Nadi
Nadi and Holt [18] have implemented their KBUILD extractor in-
dependently from us. Similar to our GOLEM tool, this extractor
calculates logical constraints that our UNDERTAKER tool [29] can
use directly. Their implementation employs pattern matching in
Linux makefiles to identify variability in KBUILD. It consists of
about 750 lines of Java code. While not (yet) publicly available, the
authors have kindly provided us with the version that has been used
in [18].

4.2 Runtime
All parsing-based approaches are (persumably) much faster than

the GOLEM implementation presented in this paper. For KBUILD-
MINER [4], no run-time data is available. The parser by Nadi and
Holt [18] processes a architecture in under 30 seconds. The current
GOLEM implemenation takes approximately 90 minutes per archi-
tecture. The obvious bottleneck is the run-time and the amount of
probing steps, which have been described in Figure 4. For Linux
v3.2 arch-x86, the list operation takes about a second (depending
on the selected features and filesystem cache state) and was executed
7,073 times.

However, the list function does neither modify the analyzed
source tree, nor exhibit other side effects. We therefore see a great
potential in improving the performance by running several prob-
ing steps in parallel. For practical applications, the large runtime
overhead has little big impact on the usability of the approach, be-
cause for many applications, such as the applications in Section 5,
the variability extraction has to be done only once per version and
architecture.

4.3 Robustness
As Linux is a moving target, variability identification and

extraction approaches need to be both conceptually as well as
implementation-wise robust. In order to evaluate the property of
robustness for future versions of Linux, we test on a wide-ranged
number of Linux versions have been retrieved from the git history.
We choose five Linux releases with one year distance that cover
4 years of the Linux development (2008-2012). In order to keep
the results for the various implementations comparable, we refrain
from analyzing earlier versions than Linux v2.6.25, because the
arch-x86 architecture was introduced in v2.6.24 by merging the
32bit and 64bit variants, which were previously maintained sepa-
rately. Table 1 summarizes the results of this analysis.

In general we found it challenging to apply the parsing-based ap-
proaches to Linux versions for which they have not been tailored to.

Table 1: Direct quantitative comparsion over Linux versions
over the last 5 years. The Kernel versions are roughly equidis-
tant over the time and include all version for which dataset are
available for KBUILDMINER and the Nadi Parser.

All source files for v2.6.25 (w/o #included files) 6,826 (127)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 6,274 (93.7%)
Files hit by Nadi parser tool crashes

All source files for v2.6.28.6 (w/o #included files) 7,665 (153)
Files hit by KBUILDMINER 7,243 (96.4%)
Files hit by GOLEM tool 7,032 (93.6%)
Files hit by Nadi parser tool crashes

All source files for v2.6.33.3 (w/o #included files) 9,827 (261)
Files hit by KBUILDMINER 9,090 (95%)
Files hit by GOLEM 9,079 (94.9%)
Files hit by Nadi parser 7,154 (74.8%)

All source files for v2.6.37 (w/o #included files) 10,958 (292)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 10,145 (95.1%)
Files hit by Nadi parser 7,916 (74.2%)

All source files for v3.2 (w/o #included files) 11,862 (276)
Files hit by KBUILDMINER data not available
Files hit by GOLEM 11,050 (95.4%)
Files hit by Nadi parser 8,592 (74.2%)

For the fuzzy-parsing approach presented by Berger et al. [4], there
are only data sets for Linux version v2.6.28.6 [4] and v2.6.33.3 [3]
available. For all other versions we were unable to produce any
results, because of the necessary (but undocumented) changes of the
Linux makefiles. These modifications include the disabling parts
of arch/x86/Makefile in a way that break a regular compilation.
The technical report leaves it open what effects these changes have
on the extracted logical constraints.

The parsing approach presented by Nadi and Holt [18] does not
require any modifications to existing Makefiles. We were able to
produce presence implications for two additional versions. Unfortu-
nately, the tool crashes with an endless recursion and a stack over-
flow on Linux v2.6.28.6 and earlier, so that no logical constraints
could be obtained.

The presented approach and implementation in this article pro-
duces presence implications on all selected versions without requir-
ing any source code modification or version specific adaptations.
Also, the extraction process for the 22 other architectures in Linux
v3.2 did not require any further modification.

As shown in this section, both parsing-based approaches have
difficulties to achieve a robust operation on a wide range of versions.
Since the Linux build system is still in active development and
difficulties like those described in Section 2.3 may appear with every
new version, every new introduced MAKE idiom requires manual
(and thus error-prone) additional engineering in order to keep up
with the Linux development. In contrast to to that, our approach
works in a robust manner with stable results for each version without
any further adaptations.

4.4 Coverage
This subsection compares the results of the three KBUILD vari-

ability extractors quantitatively. We do this by analyzing for how
many source files the respective approach produces a logical formula
as metric for their coverage in the Linux v2.6.33.3 source tree for
arch-x86. We choose this source tree because it is the most recent
version of Linux for which results of all tools are available.

For that version, KBUILD handles a total of 9,827 source files. As
pointed out by Nadi and Holt [17], 276 of these source files (2.8%)
are referenced by #include-statements in other implementation
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Table 2: Configuration Defect Analysis Results with Linux v3.2
Configuration Defects without file constraints

Code defects 1835
Referential defects 415
Logical defects 83
Total: Σ 2333

Configuration Defects with file constraints
Code defects 1835
Referential defects 439
Logical defects 299
Total: Σ 2573

source files rather than KBUILD rules in KBUILD.
The UNDERTAKER extension by Nadi and Holt [18] approach

identifies presence implications for 7,154 out of all source files
(74.8%). For 2,412 source files, no logical implication was found. A
quick analysis of the data indicates that deficiencies in the mapping
from build products to source files (cf. Section 2.2.1) are part of the
problem for this relatively high number.

An analysis of the data provided for KBUILDMINER [3] on the
tool’s website for arch-x86 shows that the tool produces pres-
ence implications for 9,090 out of all source files (95%) on Linux
v2.6.33.3, arch-x86. This data is consistent to the technical re-
port [4], which states a coverage of 94 percent on Linux v2.6.28.6,
arch-x86.

The current implementation of our GOLEM tool calculates pres-
ence implications for 9,079 out of the 9,566 source files on Linux
v2.6.33.3 (94.9%) on arch-x86.

5. APPLICATIONS
As part of the VAMOS project [30], we aim at providing (Linux)

developers tool support for managing and maintaining variability.
This goal includes finding configuration defects [29] and making ex-
isting tools for static analysis variability-aware [28]. The remainder
of this section demonstrates the improvements of considering the
build system in these tools.

5.1 Configuration Defect Analysis
In earlier work [29], we have discussed and analyzed

configuration-derived defects in the variability implementation on
an earlier version of Linux v2.6.35. Such defects are inconsistencies
in the variability implementation, such as #ifdef blocks that either
cannot be selected under any configuration selection (a dead block),
or there is provably no configuration that deselects a CPP block (an
undead block). Our UNDERTAKER tool creates for each #ifdef
block a set of propositional formulas and checks their satisfiability
with a SAT Checker. The first formula includes only the constraints
that are found in the structure of the CPP statements [cf. 24]. If this
formula is unsatisfiable, then the block is classified as a code defect.
If it is satisfiable, logical constraints that derive from the KCONFIG
feature model are added as further conjunctions to the formula. If
the enriched formula is unsatisfiable, the UNDERTAKER tool clas-
sifies the CPP block as a logical defect. This formula may (still)
contain configuration variables that are not declared in the configu-
ration model for this architecture (e.g., CONFIG_ARM is not present on
arch-x86, etc.). The third formula therefore adds contraints to set
such absent variables to false, and checks for satisfiability again. If
this enriched formula is now unsatisfiable, then the UNDERTAKER
tool classifies the CPP block as referential defect.

For this kind of analysis, our tools, which (now) include the
extracted variability from KBUILD, do not only need to be robust
regarding the Linux version, but also the analyzed architecture. A

Table 3: CC-Analysis Results with Linux v3.2, arch-x86
Analyzed files 10,383
Number of variation points (files + #ifdef blocks) 25,369
1. Comparison with ’allyesconfig’

Number of compiler (tool) invocations 10,383
Rate of skipped invocations 18.5%
Configuration Coverage 67.2%

2. Expansion without file constraints
Number of partial configurations 14,169
Rate of skipped tool invocations (partial configurations) 83.6%
Configuration Coverage 37.4%

3. Expansion with file constraints
Number of partial configurations 12,388
Rate of skipped tool invocations (partial configurations) 18.2%
Configuration Coverage 78.6%

more detailed explanation of this experiment can be found in [29].
That work has yielded 1,776 configurability issues, for which 123
patches has been proposed (49 merged, 8 accepted, 15 acknowl-
edged), which in total have fixed 364 of these issues (among them
20 confirmed new bugs).

Table 2 compares the impact of the inclusion of the extracted
source file constraints by our GOLEM tool on the results produced
by the approach as presented in [29]. In this experiment, source file
constraints from all 23 architectures in Linux v3.2 have been used
to enrich the variability models. Every defect is tested against each
architecture individually (where applicable) and classified as such.

In this work, we define as variation point every CPP block and
source file that KCONFIG allows to include or exclude in the re-
sulting build products. This simplifaction is valid, because the
coarse-grained selection of source files by MAKE could also be
implemented by CPP by introducing additional #ifdef blocks that
contain the whole file.

We did not find any dead source files, that is, files that will
never be compiled due to the constraints from KBUILD. We can
therefore confirm that the contributions of Nadi and Holt [18] have
fixed all these "dead files". Nevertheless, by considering KBUILD-
derived constraints, the UNDERTAKER tool detects 216 additional
(+260.2%) logical defects in #ifdef-blocks. The number of con-
figuration defects increases by 10.3 percent. This shows that the
source-file constraints have an considerable improvement on the
results.

5.2 Configuration Coverage
This subsection investigates the effects of the extracted source-

file constraints on the configuration coverage (CC) [28]: We de-
fine CC as the fraction of selected variation points (#ifdef-blocks
and source files as defined in Section 2.1) divided by all possible
variation points. However, one has to be careful with calculating
the "possible" variation points on a specific architecture, because
architecture-specific drivers or #ifdef blocks that test for a specific
other architecture must not be counted. In order to get a fair com-
parison, we use our UNDERTAKER tool to detect such unselectable
variation points in the 11,862 source files considered by KBUILD
on arch-x86 and exclude them from all results in this subsection.

We calculate a set of configurations which, when combined (i.e.,
compile each configuration individually), maximize the CC. This
allows "traditional" tools for static analysis to uncover additional
defects that are hidden in seldomly selected #ifdef-blocks. Table 3
summarizes the results. Since the analyzed source files only ref-
erence a subset of all available KCONFIG features, the produced
configuration are “incomplete” in the sense that they define only
referenced features. Such a partial configuration sets only variation
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points from the extracted software variability [27] of a given source
file. The remaining, unreferenced features need to be set in a way
that they do not conflict in order to obtain a concrete product con-
figuration, upon which traditional tools for static analysis can be
employed. We use the KCONFIG tool to expand such partial to full
configurations.

For comparison purposes, we first calculate the CC for the KCON-
FIG provided configuration preset allyesconfig. Interestingly,
allyesconfig is way off from a "full" configuration, as 1,917
(18.5%) of all source files for arch-x86 are not compiled. This,
and the fact that every file with #else and #elif statements require
more than one configuration to select all lines of code, account for
the missing 32.8% CC.

In previous work [28], we have calculated partial configurations
on all source files, and applied the KCONFIG infrastructure to expand
each partial configuration to a full configuration. In this work, we
consider both, KCONFIG-controlled #ifdef blocks (i.e., #ifdef
blocks with a logical expression that contains at least one reference
to a variable that starts with CONFIG_), as well as the inclusion
of a source file into the compilation process, as a variation point.
Therefore, the numbers of the calculated CC are hard to compare to
those in our previous work [28].

Table 3 shows that the number of calculated configurations is not
much higher than the number of analyzed source files (about 19.3%
more configurations than source files). This number is surprisingly
low because most files in Linux do not contain #ifdef blocks, but
are controlled by at most a single MAKE variable (cf. Section 2.2).
This means the majority of files in Linux require only a single
configuration to achieve full CC.

For each partial configuration, we check if the respective ex-
panded configuration would actually let KBUILD include the file in
the build process. Because of uncovered source file constraints in
the GOLEM implementation and incompleteness of our KCONFIG
variability model, this is not always the case. We do not count
variation points of a partial configuration that does not include its
corresponding file, because this configuration does not practically
cover any variation point.

When calculating the CC without considering source file con-
straints (the second experiment in Table 3), we notice a coverage
of only 9,492 out of 25,369 (37.4%) possible variation points. The
reason for this alarmingly low rate is that 11,844 out of 14,169
(83.6%) variation points have not been considered, because the cal-
culated configuration did not compile the source file for which it
has been calculated.

When calculating the CC with considering the file constraints
(the third experiment in Table 3), we observe a CC of 19,938 out of
25,369 (78.6%) variation points. The reason for this improvement
is that the rate of skipped configurations decreases dramatically to
16.4 percent. This number is still considerable. Since each skipped
configuration provably contains skipped variation points, we ex-
pect that additional engineering (cf. Section 6.1) will considerably
increase the CC even further. Additionally, a first analysis of the cal-
culated partial configurations shows that the quality of the expansion
process still leaves room for improvement: In many expanded con-
figurations, we observe omitted and wrongly set features. Improving
the expansion process would therefore improve the achieved CC as
well.

Because of the skipped partial configurations and the deficiencies
in the expansion process, the improvement of the calculated CC
has to be seen as lower bound that can be greatly improved by
more precise MAKE and KCONFIG models, and better expansion of
partial configurations. We are currently working on improving these
results.

6. DISCUSSION
As demonstrated by the two applications in the previous section,

the implementation of our approach greatly assists variability-aware
analyses. This subsection discusses the limitations and in what way
the results can be transferred to other systems.

6.1 Benefits and Limitations of the Approach
Compared to parsing-based approaches for extracting variability

from the build system [e.g., 4, 13, 18] our approach of build-system
probing exhibits a number of unique characteristics. While existing
parsing-based approaches suffer from technical implementation
challenges that require manual (and error-prone) engineering for
the many corner-cases, our approach handles complicated makefile
constructions as presented in Section 2.3 and shell escapes (i.e.,
invocation of external tools in the build system) error-free. It is
also much harder, as presented in Section 4.3, for a parsing based
approach to keep pace with the Linux development, whereas our
approach works predictably for a wide range of Linux versions and
architectures.

However, we also make a number assumptions on the build sys-
tem, which may impact the results of our approach:

1. We exploit the observation that the file presence implications
in KBUILD correspond to the hierarchical organiztion of di-
rectories along subsystems. If a feature is a prequisite for
enabling files in a subdirectories, then this constraint applies
for each file in that directory.

2. We assume that in a subdirectory, each file is only dependant
on single features and not by a conjunction of two or more
features.

3. In KBUILD, a feature always selects additional sources files
for compilation. In no case the selection of a feature causes
a source file to be removed from compilation process. This
is a rather uncommon feature for MAKE based systems but
more commonly found in systems that employ delta-oriented
programming (DOP) [22].

As shown in Section 4, the current implementation produces pres-
ence implications for 95.4% of all source files in Linux on arch-x86.
An investigation of the remaining 4.6% source files reveales that
the majority of files violate assumption #2. The violation of this
assumption is best explained with an example:

1 my-obj-$(CONFIG_FB_MATROX_G) += matroxfb_crtc2.o
2 obj-$(CONFIG_FB_MATROX) += $(my-obj-y)

Here the the file matroxfb_crtc2.o is only built if both features
FB_MATROX_G and FB_MATROX are enabled at the same time. The
helper function features_in_dir fails to detect that those two features
have a connection. Therefore both features are tested independently
and the build product matroxfb_crtc2.o does not show up in the
output of list.

In the future, we intend to cover these cases by employing some
simple heuristics (e.g., with data from the KCONFIG model) in the
helper function features_in_dir to probe for more than a single con-
figuration variable at the same time without increasing the number of
necessary probing steps excessively. We expect this to improve the
resulting logical constraints both the quantitatively and qualitatively
even further.

Depending on how the extracted build-system constraints are
employed, the higher runtime, compared to other approaches, might
be a limitation of the approach. However many applications require
the KBUILD constraints to be calculated exactly once and reuse

28



them in analyses that take much longer compared to the extraction
process. This applies to both applications that have been presented
in Section 5.

6.2 Generalizability
In contrast to the parsing-based approaches, which rely heavily

the idiomatic style in which KBUILD makes use of the MAKE lan-
guage, we avoid this dependency by treating the build system as a
black box. Only two primitives, list and features_in_dir, have to
be reimplemented for other build systems. This thin connection to
the internal structures is the main reason for the robustness of the
probing based approach with respect to the presented application on
a wide range of Linux versions and architectures.

In order to show the portability of our approach, we have imple-
mented the necessary adaptations for two further software projects:
The build system of BUSYBOX [7], a toolbox of UNIX-tools for em-
bedded systems, and the build system of FIASCO [12], a L4-like
micro kernel. Both ports took less than 100 additional lines of code
and were straight-forward to implement. We are convinced that the
assumptions made on KBUILD in Section 6.1 also apply to other
build systems.

6.3 Comparison of the Calculated Source File
Constraints

For a qualitative evaluation of the extracted presence implications,
we compare the output of our GOLEM tool to the results of Berger
et al. [4] and Nadi and Holt [18]. For all the files that have a presence
implication in our model, the presence implication from the other
models is checked for semantic equivalence by using a SAT Checker.

φM1(f) ↔ φM2(f) f ∈ files(M1) ∩ files(M2)

This equivalence check is done by instrumenting the SAT checker
to prove that the bi-implication of the presence implications is a
tautology and therefore have always the same implication. We use
this check to compare the GOLEM model to the models of Nadi and
Holt and Berger et al.

For the much smaller model of Nadi and Holt, 15 percent of the
7,082 common files have an equivalent presence implication and
81.9 percent have a presence implication that implies the GOLEM
presence implication. We conclude that this model is mostly sub-
sumed by the GOLEM model.

The comparison of the GOLEM model with the model from Berger
et al. shows that out of 8,885 common files, 99.6 percent fulfill this
bi-implication. This pratical equivalence shows that both tools are
similarly mature.

7. RELATED WORK
The analysis of variability in Linux is a hot topic in the Software

Engineering (SWE) and Software Product Line (SPL) community.
Zengler and Küchlin [31] show an attempt to derive formal seman-
tics of KCONFIG. She et al. [23] reverse-engineer the KCONFIG
variability declaration in order to reconstruct a feature model. In
[10] we have shown and quantified that the fine-grained variability
implementation by CPP is dominated by a more coarse-grained man-
agement in KBUILD. We therefore think that KBUILD variability
extractors, such as KBUILDMINER [3], the Nadi parser [18] or the
GOLEM tool presented in this article, are a necessary complement
for holistic variability analysis.

Berger et al. [6] investigate the configuration languages and tools
KCONFIG and configuration description language (CDL). While
the work shows that variability-management tools are employed
successfully in open-source operating systems, it covers only the
feature specification and modeling.

Adams et al. [2] demonstrate that analysis, visualization and in
essence, re-engineering of the Linux build system is feasible. Their
framework Makao [1] infers modularity in KBUILD by analyzing
build traces. However, the amount of variation points that we iden-
tify in KBUILD with this article indicates that the full re-engineering
of build-system variability remains an unsolved problem.

Kästner et al. [13] propose a technique coined "variability aware
parsing", which essentially integrates the CPP variability into tools
for variability aware type-checking. Mainly because of implemen-
tation challenges, TypeChef focuses on arch-x86 and requires
assistance in form of additional constraints by tools like KBUILD-
MINER [3]. Even with this, the approach is restricted to CPP based
variability—the build-system–derived variability remains out of
scope.

Palix et al. [19] try to reproduce a ten year old analysis on Linux
by Chou et al. [8] in order to investigate the evolutionary develop-
ment of Linux across the last decade. As the old experiment misses
to state the exact configuration that was used, the environment could
only be approximated. Hereby, the paper indirectly discusses CC in
the sense that the selected configuration can (and does) affect the
results of static analysis tools considerably. We take this anecdote
as call for further integration of configuration consistency checks
and CC into static analysis tools.

Inside the software verification community, Post and Sinz [21]
introduce a technique coined "configuration lifting", which translates
the variability expressed in KCONFIG, KBUILD and CPP into C
source code. The generated C files encode the variability of the
original source, the makefiles, and the feature model, and is verified
with the CBMC tool by Clarke, Kroening, and Lerda [9]. While
"configuration lifting" has similar goals, it remains unclear if that
approach scales to the size of Linux.

8. SUMMARY AND CONCLUSION
To cope with a broad range of application and hardware settings,

system software has to be highly configurable. Linux v3.2, as a
prominent example, offers 11,000 configurable features. The imple-
mentation of this huge amount of static variability is implemented
by #ifdef-blocks in the source code, but especially by the Linux
make system. From the maintenance point of view, this imposes
big challenges, as the feature model and the configurability that is
actually implemented in the code have to be kept in sync. This calls
for tool support.

A major hurdle for acceptance by the Linux developers is that
such tools have to work reliably on the latest development version
of Linux. Robustness against evolutionary changes in Linux, which
includes both C code and the build system, is a strong requirement.
In this paper, we have presented such a robust approach for extract-
ing variability from the Linux build system that extracts logical
constraints for 95.4% of all source files in Linux v3.2 on the x86
architecture. Unlike existing approaches, our approach does not try
to analyze the makefiles, but exploits the build system itself to infer
the effects of selected features on the set of compiled files. Instead
of manual and error-prone engineering that tailors the variability
extractor to a specific version or architecture of Linux, our approach
requires only two basic and straightforward to implement primitives.
This thin interface to the build system allows a straight-forward to
implement adaptation of the approach to other software projects,
which has been demonstrated for BUSYBOX [7] and FIASCO [12].
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