CheapBFT: Resource-efficient Byzantine Fault Tolerance

Riidiger Kapitza®’ Johannes Behl?
Seyed Vahid Mohammadi*

'TU Braunschweig
3IBM Research — Zurich

Abstract

One of the main reasons why Byzantine fault-tolerant (BFT)
systems are not widely used lies in their high resource con-
sumption: 3f + 1 replicas are necessary to tolerate only f
faults. Recent works have been able to reduce the minimum
number of replicas to 2f + 1 by relying on a trusted sub-
system that prevents a replica from making conflicting state-
ments to other replicas without being detected. Nevertheless,
having been designed with the focus on fault handling, these
systems still employ a majority of replicas during normal-
case operation for seemingly redundant work. Furthermore,
the trusted subsystems available trade off performance for
security; that is, they either achieve high throughput or they
come with a small trusted computing base.

This paper presents CheapBFT, a BFT system that, for
the first time, tolerates that all but one of the replicas active
in normal-case operation become faulty. CheapBFT runs a
composite agreement protocol and exploits passive replica-
tion to save resources; in the absence of faults, it requires that
only f + 1 replicas actively agree on client requests and ex-
ecute them. In case of suspected faulty behavior, CheapBFT
triggers a transition protocol that activates f extra passive
replicas and brings all non-faulty replicas into a consistent
state again. This approach, for example, allows the system to
safely switch to another, more resilient agreement protocol.
CheapBFT relies on an FPGA-based trusted subsystem for
the authentication of protocol messages that provides high
performance and comprises a small trusted computing base.

Categories and Subject Descriptors D.4.7 [Organization
and Design]: Distributed Systems; C.4 [Performance of
Systems]: Fault Tolerance

General Terms Design, Performance, Reliability
Keywords Byzantine Failures; Resource Efficiency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’12, April 10-13, 2012, Bern, Switzerland.

Copyright © 2012 ACM 978-1-4503-1223-3/12/04. .. $10.00

Christian Cachin®
Wolfgang Schroder-Preikschat?

2Friedrich—-Alexander University Erlangen—Nuremberg
4KTH - Royal Institute of Technology

Tobias Distler? Simon Kuhnle?

Klaus Stengel®

1. Introduction

In an ongoing process, conventional computing infrastruc-
ture is increasingly replaced by services accessible over the
Internet. On the one hand, this development is convenient
for both users and providers as availability increases while
provisioning costs decrease. On the other hand, it makes our
society more and more dependent on the well-functioning of
these services, which becomes evident when services fail or
deliver faulty results to users.

Today, the fault-tolerance techniques applied in practice
are almost solely dedicated to handling crash-stop failures,
for example, by employing replication. Apart from that, only
specific techniques are used to selectively address the most
common or most severe non-crash faults, for example, by
using checksums to detect bit flips. In consequence, a wide
spectrum of threats remains largely unaddressed, including
software bugs, spurious hardware errors, viruses, and intru-
sions. Handling such arbitrary faults in a generic fashion re-
quires Byzantine fault tolerance (BFT).

In the past, Byzantine fault-tolerant systems have mainly
been considered of theoretical interest. However, numerous
research efforts in recent years have contributed to mak-
ing BFT systems practical: their performance has become
much better [4} 9,17, 18]], the number of required replicas
has been reduced [8, 33} [34], and methods for adding di-
versity and for realizing intrinsically different replicas with
varying attack surfaces have been introduced [3}24]. There-
fore, a debate has been started lately on why, despite all
this progress, industry is reluctant to actually exploit the
available research [6, [19]. A key outcome of this debate is
that economical reasons, mainly the systems’ high resource
demand, prevent current BFT systems from being widely
used. Based on this assessment, our work aims at building
resource-efficient BFT systems.

Traditional BFT systems, like PBFT [4], require 3f + 1
replicas to tolerate up to f faults. By separating request
ordering (i.e., the agreement stage) from request process-

*This work was partially supported by the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement
no. 257243 (TClouds project: http://www.tclouds-project.eu/) and
by the German Research Council (DFG) under grant no. KA 3171/1.

http://www.tclouds-project.eu/

ing (i. e., the execution stage), the number of execution repli-
cas can be reduced to 2f + 1 [34]. Nevertheless, 3f + 1
replicas still need to take part in the agreement of requests.
To further decrease the number of replicas, systems with a
hybrid fault model have been proposed that consist of un-
trusted parts that may fail arbitrarily and trusted parts which
are assumed to only fail by crashing [5}/8,121,123}130,[31}33].
Applying this approach, virtualization-based BFT systems
can be built that comprise only f + 1 execution replicas [33].
Other systems [5,8,130,31] make use of a hybrid fault model
to reduce the number of replicas at both stages to 2f + 1 by
relying on a trusted subsystem to prevent equivocation; that
is, the ability of a replica to make conflicting statements.

Although they reduce the provisioning costs for BFT,
these state-of-the-art systems have a major disadvantage:
they either require a large trusted computing base, which
includes the complete virtualization layer [23, 30, 33]], for
example, or they rely on trusted subsystems for authenticat-
ing messages, such as a trusted platform module (TPM) or a
smart card [21} 31]]. These subsystems impose a major per-
formance bottleneck, however. To address these issues, we
present CheapBFT, a resource-efficient BFT system that re-
lies on a novel FPGA-based trusted subsystem called CASH.
Our current implementation of CASH is able to authenti-
cate more than 17,500 messages per second and has a small
trusted computing base of only about 21,500 lines of code.

In addition, CheapBFT advances the state of the art
in resource-efficient BFT systems by running a composite
agreement protocol that requires only f + 1 actively partici-
pating replicas for agreeing on requests during normal-case
operation. The agreement protocol of CheapBFT consists
of three subprotocols: the normal-case protocol CheapTiny,
the transition protocol CheapSwitch, and the fall-back pro-
tocol MinBFT [31]. During normal-case operation, Cheap-
Tiny makes use of passive replication to save resources; it is
the first Byzantine fault-tolerant agreement protocol that re-
quires only f + 1 active replicas. However, CheapTiny is not
able to tolerate faults, so that in case of suspected or detected
faulty behavior of replicas, CheapBFT runs CheapSwitch to
bring all non-faulty replicas into a consistent state. Having
completed CheapSwitch, the replicas temporarily execute
the MinBFT protocol, which involves 2f + 1 active repli-
cas (i.e., it can tolerate up to f faults), before eventually
switching back to CheapTiny.

The particular contributions of this paper are:

e To present and evaluate the CASH subsystem (Section[2)).
CASH prevents equivocation and is used by CheapBFT
for message authentication and verification.

e To describe CheapBFT’s normal-case agreement proto-
col CheapTiny, which uses passive replication to save re-
sources (Section [4). CheapTiny works together with the
novel transition protocol CheapSwitch, which allows to
abort CheapTiny in favor of a more resilient protocol
when faults have been suspected or detected (Section|5).

e To evaluate CheapBFT and related BFT systems with
different workloads and a Byzantine fault-tolerant variant
of the ZooKeeper [16] coordination service (Section|[7).

In addition, Section (3| provides an overview of CheapBFT
and its system model. Section [6] outlines the integration of
MinBFT [31]. Section [§| discusses design decisions, Sec-
tion @]presents related work, and Section |10|concludes.

2. Preventing Equivocation

Our proposal of a resource-efficient BFT system is based on
a trusted subsystem that prevents equivocation; that is, the
ability of a node to make conflicting statements to differ-
ent participants in a distributed protocol. In this section, we
give background information on why preventing equivoca-
tion allows one to reduce the minimum number of replicas
in a BFT system from 3f + 1 to 2f + 1. Furthermore, we
present and evaluate CheapBFT’s FPGA-based CASH sub-
system used for message authentication and verification.

2.1 From 3f + 1 Replicas to 2f + 1 Replicas

In traditional BFT protocols like PBFT [4], a dedicated
replica, the leader, proposes the order in which to execute
requests. As a malicious leader may send conflicting propos-
als to different replicas (equivocation), the protocol requires
an additional communication round to ensure that all non-
faulty replicas act on the same proposal. In this round, each
non-faulty replica echoes the proposal it has received from
the leader by broadcasting it to all other replicas, enabling
all non-faulty replicas to confirm the proposal.

In recent years, alternative solutions have been introduced
to prevent equivocation, which eliminate the need for the
additional round of communication [31] and/or reduce the
minimum number of replicas in a BFT system from 3f + 1
to 2f + 1 [5,[8,[31]. Chun et al. [5], for example, present an
attested append-only memory (A2M) that provides a trusted
log for recording the messages transmitted in a protocol. As
every replica may access the log independently to validate
the messages, non-faulty replicas are able to detect when a
leader sends conflicting proposals.

Levin et al. [21] show that it is sufficient for a trusted
subsystem to provide a monotonically increasing counter.
In their approach, the subsystem securely assigns a unique
counter value to each message and guarantees that it will
never bind the same counter value to a different message.
Hence, when a replica receives a message, it can be sure that
no other replica ever sees a message with the same counter
value but different content. As each non-faulty replica val-
idates that the sequence of counter values of messages re-
ceived from another replica does not contain gaps, malicious
replicas cannot equivocate messages. Levin et al. used the
trusted counter to build A2M, from which a BFT system
with 2 f + 1 replicas has been realized.

We propose CheapBFT, a system with only f + 1 active
replicas, built directly from the trusted counter. In the fol-
lowing, we present the trusted counter service in CheapBFT.

2.2 The CASH Subsystem

The CASH (Counter Assignment Service in Hardware) sub-
system is used by CheapBFT for message authentication
and verification. To prevent equivocation, we require each
replica to comprise a trusted CASH subsystem; it is initial-
ized with a secret key and uniquely identified by a subsystem
id, which corresponds to the replica that hosts the subsystem.
The secret key is shared among the subsystems of all repli-
cas. Apart from the secret key, the internal state of a subsys-
tem as well as the algorithm used to authenticate messages
may be known publicly.

For now, we assume that the secret key is manually
installed before system startup. In a future version, every
CASH subsystem would maintain a private key and expose
the corresponding public key. A shared secret key for every
protocol instance may be generated during initialization, en-
crypted under the public key of every subsystem, and trans-
ported securely to every replica.

2.2.1 Trusted Counter Service

CASH prevents equivocation by issuing message certificates
for protocol messages. A message certificate is a crypto-
graphically protected proof that a certain CASH instance
has bound a unique counter value to a message. It com-
prises the id of the subsystem that issued the certificate,
the counter value assigned, and a message authentication
code (MAC) generated with the secret key. Note that CASH
only needs symmetric-key cryptographic operations for mes-
sage authentication and verification, which are much faster
than public-key operations.

The basic version of CASH provides functions for cre-
ating (create M C') and verifying (checkM C') message cer-
tificates (see Figure|I). When called with a message m, the
createM C' function increments the local counter and uses
the secret key K to generate a MAC a covering the local
subsystem id S, the current counter value ¢, and the mes-
sage (L.7-8). The message certificate mc is then created by
appending S, ¢, and a (L. 9). To attest a certificate issued by
another subsystem s, the check M C function verifies the cer-
tificate’s MAC and uses a function is Next() to validate that
the sequence of messages the local subsystem has received
from subsystem s contains no gaps (L. 14). Internally, the
isNext() function keeps track of the latest counter values
of all subsystems and is therefore able to decide whether a
counter value ¢, assigned to a message is the next in line for
subsystem s. If this is the case, the isNext() function incre-
ments the counter corresponding to subsystem s and returns
success; otherwise, the counter remains unchanged.

To support distinct counter instances in a protocol and
several concurrent protocols, the full version of CASH sup-
ports multiple counters, each specified by a different counter
name. All counters to be used have to be provisioned during
initialization. In the counter implementation, the name be-
comes a part of the argument passed to the MAC for the cre-

1 upon initialization do

2 K :=secret key;

3 S :=local subsystem id;
4 c:=0;

6 upon call create M C(m) do
7 c:=c+1;

8 a:=MAC(K, S|c||m);
9 mc:=(S,¢a);

10 return mc;

12 upon call checkM C(mc, m) do

13 (s,¢s,a) := mc;

14 ifMAC(K, s||cs|/m) = a and isNezt(s, cs) do
15 return TRUE;

16 else

17 return FALSE;

Figure 1. Implementation of CASH’s trusted counter.

ation and verification of message certificates. In the remain-
der of this paper, the counter name is written as a subscript
to CASH operations (e. g., create M C,. for counter c).

Furthermore, CASH provides operations for verifying
a certificate without checking the correspondence of the
counter values and without the side-effect of incrementing
the counter in isNext(); there are also administrative oper-
ations for reading the subsystem id, the configured counter
names, and the values of all internal counters. These oper-
ations are omitted from Figure |1} There are no means for
the host system to modify subsystem id, counter names, or
counter values after the initialization stage.

2.2.2 Implementation

We developed CASH to meet the following design goals:

e Minimal trusted computing base: The code size of
CASH must be small to reduce the probability of pro-
gram errors that could be exploited by attackers. Given
its limited functionality, there is no need to trust an en-
tire (hardened) Linux kernel [8] or hypervisor [23].

¢ High performance: As every interaction between repli-
cas involves authenticated messages, we require CASH
to handle thousands of messages per second. Therefore,
the use of trusted platform modules or smart cards is not
an option, as on such systems a single authentication op-
eration takes more than 100 milliseconds [21, 31].

Our implementation of CASH is based on a commodity Xil-
inx Spartan-3 XC3S1500 FPGA mounted on a dedicated
PCI card. Both the program code and the secret key are
stored on the FPGA and cannot be accessed or modified by
the operating system of the host machine. The only way to
reprogram the subsystem is by attaching an FPGA program-
mer, which requires physical access to the machine.

As depicted in Figure |2} applications communicate with
the FPGA via a character device (i.e., /dev/cash). To au-
thenticate a message, for example, the application first writes

Application

Certificate mc

/dev/cash

CREATEMC, msgm | FPGA trusted

Key K —+

. IDS | HMAC ||
Certificate mc CREATEMC, msg m Counter ¢ | SHA-256 -‘

Figure 2. Creation of a message certificate mc for a mes-
sage m using the FPGA-based trusted CASH subsystem.

both a CREATEMC op code and the message to the device,
and then retrieves the message certificate as soon it becomes
available. Our current prototype uses an HMAC-SHA-256
for the authentication of messages.

2.2.3 Integration with CheapBFT

In CheapBFT, replicas use the CASH subsystem to authen-
ticate all messages intended for other replicas. However, this
does not apply to messages sent to clients, as those messages
are not subject to equivocation. To authenticate a message, a
replica first calculates a hash of the message and then passes
the hash to CASH’s create M C' function. Creating a mes-
sage certificate for the message hash instead of the full mes-
sage increases the throughput of the subsystem, especially
for large messages, as less data has to be transferred to the
FPGA. To verify a message received from another replica,
a replica calls the check M C function of its local CASH in-
stance, passing the message certificate received as well as a
hash of the message. Note that, for simplicity, we omit the
use of this hash in the description of CheapBFT.

2.2.4 Performance Evaluation

We evaluate the performance of the CASH subsystem in-
tegrated with an 8-core machine (2.3 GHz, 8 GB RAM) and
compare CASH with three other subsystems that provide the
same service of assigning counter values to messages:

e SoftLib is a library that performs message authentication
and verification completely in software. As it runs in the
same process as the replica and therefore does not require
any additional communication, we consider its overhead
to be minimal. Note, however, that it is not feasible to use
SoftLib in a BFT setting with 2f + 1 replicas because
trusting SoftLib would imply trusting the whole replica.

e SSL is a local OpenSSL server running in a separate
process on the replica host. Like SoftLib, we evaluate
SSL only for comparison, as it would also not be safe to
use this subsystem in a BFT system with 2 f + 1 replicas.

e VM-SSL is a variant of SSL, in which the OpenSSL
server runs in a Xen domain on the same host, similar to
the approach used in [30]. Relying on VM-SSL requires
one to trust that the hypervisor enforces isolation.

In this experiment, we measure the time it takes each sub-
system variant to create certificates for messages of different
sizes, which includes computing a SHA-256 hash (32 bytes)

Message size

SUbSYStem |5 B no hashing) | 328 | TKB | 4KB
VM-SSL 1013 | 1014 | 1015 | 1014
SSL 67| 69| 86| 139
SoftLib 4 4| 17| 55
CASH 570 s8] 77| 131

(a) Creation overhead for a certificate depending on message size.

Message size

SUbSYStem |5 B no hashing) | 328 | TKB | 4KB
VM-SSL 1013 | 1013 | 1013 | 1012
SSL 67| 69| 87| 140
SoftLib 4 4| 17| S5
CASH 60| 62| 80| 134

(b) Verification overhead for a certificate depending on message size.

Table 1. Overhead (in microseconds) for creating and veri-
fying a message certificate in different subsystems.

over a message and then authenticating only the hash, not the
full message (see Section[2.2.3). In addition, we evaluate the
verification of message certificates. Table 1| presents the re-
sults for message authentication and verification for the four
subsystems evaluated. The first set of values excludes the
computation of the message hash and only reports the times
it takes the subsystems to authenticate/verify a hash. With
all four trusted counter service implementations only rely-
ing on symmetric-key cryptographic operations, the results
in Tables [1aand[Ib|show a similar picture.

In the VM-SSL subsystem, the overhead for communi-
cation with the virtual machine dominates the authentication
process and leads to results of more than a millisecond, inde-
pendent of message size. Executing the same binary as VM-
SSL but requiring only local socket communication, SSL
achieves a performance in the microseconds range. In Soft-
Lib, which does not involve any inter-process communica-
tion, the processing time significantly increases with mes-
sage size. In our CASH subsystem, creating a certificate for
a message hash takes 57 microseconds, which is mainly due
to the costs for communication with the FPGA. As a result,
CASH is able to authenticate more than 17,500 messages
per second. Depending on the message size, computing the
hash adds up 1 to 74 microseconds per operation; however,
as hash creation is done in software, this can be done in par-
allel with the FPGA authenticating another message hash.
The results in Table [1bl show that in CASH the verification
of a certificate for a message hash takes about 5% longer
than its creation. This is due to the fact that in order to check
a certificate, the FPGA not only has to recompute the certifi-
cate but also needs to perform a comparison.

Note that we did not evaluate a subsystem based on
a trusted platform module (TPM), as the TPMs currently
available only allow a single increment operation every 3.5
seconds to protect their internal counter from burning out

too soon [31]. A TPM implementation based on reconfig-
urable hardware that could be adapted to overcome this
issue did not reach the prototype status due to hardware
limitations [11]. Alternative implementations either perform
substantial parts in software, which makes them comparable
to the software-based systems we presented, or suffer from
the same problems as commodity solutions [1}[12].

Furthermore, we did not measure the performance of a
smart-card-based subsystem: in [21], Levin et al. report a
single authentication operation with 3-DES to take 129 mil-
liseconds, and the verification operation to take 86 millisec-
onds using a smart card. This is orders of magnitude slower
than the performance of CASH.

2.2.5 Trusted Computing Base

Besides performance, the complexity of a trusted subsystem
is crucial: the more complex a subsystem, the more likely
it is to fail in an arbitrary way, for example, due to an
attacker exploiting a vulnerability. In consequence, to justify
the assumption of the subsystem being trusted, it is essential
to minimize its trusted computing base.

Table |2| outlines that the basic counter logic and the rou-
tines necessary to create and check message certificates are
similar in complexity for both SSL variants and CASH.
However, the software-based isolation and execution sub-
strate for SSL and VM-SSL are clearly larger albeit we
use the conservative values presented by Steinberg and
Kauer [26]. In contrast, the trusted computing base of a TPM
is rather small: based on the TPM emulator implementation
of Strasser and Stamer [28], we estimate its size to be about
20 KLOC, which is only slightly smaller than the trusted
computing base of CASH. For a smartcard-based solution,
we assume similar values for the counter logic and certificate
handling as for CASH. In addition some runtime support has
to be accounted.

Going one step beyond approximating code complexity,
it has to be noted that FPGAs, as used by CASH, per se are
less resilient to single event upsets (e. g., bit flips caused by
radiation) compared to dedicated hardware. However, fault-
tolerance schemes can be applied that enable the use of
FPGAs even in the space and nuclear sector [27]]. Regard-
ing code generation and the verifiability of code, similar tool
chains can be used for CASH and building TPMs. Accord-
ingly, their trustworthiness should be comparable.

In summary, our CASH subsystem comprises a small
trusted computing base, which is comparable in size to
the trusted computing base of a TPM, and similarly resilient
to faults, while providing a much higher performance than
readily available TPM implementations (see Section|2.2.4).

3. CheapBFT

This section presents our system model and gives an over-
view of the composite agreement protocol used in Cheap-
BFT to save resources during normal-case operation; the
subprotocols are detailed in Sections [4]to[6]

Subsystem | Components KLOC \ Total ‘
Linux 200.0
SSL Counter logic 0.3
Cryptographic functions 0.4 | 200.7
VM-SSL Virtualization 100.0 | 300.7
PCI core 18.5
CASH Counter logic 2.2
Cryptographic functions 0.8 21.5

Table 2. Size comparison of the trusted computing bases of
different subsystems in thousands of lines of code.

3.1 System Model

We assume the system model used for most BFT systems
based on state-machine replication [4}/17,/18}/29-31,/34] ac-
cording to which up to f replicas and an unlimited number
of clients may fail arbitrarily (i. e., exhibit Byzantine faults).
Every replica hosts a trusted CASH subsystem with its sub-
system id set to the replica’s identity. The trusted CASH sub-
system may fail only by crashing and its key remains secret
even at Byzantine replicas. As discussed in Section
this implies that an attacker cannot gain physical access to a
replica. In accordance with other BFT systems, we assume
that replicas only process requests of authenticated clients
and ignore any messages sent by other clients.

The network used for communication between clients and
replicas may drop messages, delay them, or deliver them out
of order. However, for simplicity, we use the abstraction of
FIFO channels, assumed to be provided by a lower layer, in
the description of the CheapBFT protocols. For authenticat-
ing point-to-point messages where needed, the operations of
CASH are invoked. Our system is safe in an asynchronous
environment; to guarantee liveness, we require the network
and processes to be partially synchronous.

3.2 Resource-efficient Replication

CheapBFT has been designed with a focus on saving re-
sources. Compared with BFT systems like PBFT [4, (17,
18,129, [34], it achieves better resource efficiency thanks to
two major design changes: First, each CheapBFT replica
has a small trusted CASH subsystem that prevents equivo-
cation (see Section [2); this not only allows us to reduce the
minimum number of replicas from 3f + 1 to 2f + 1 but
also minimizes the number of protocol messages [5, 8, 21,
30,131,134]. Second, CheapBFT uses a composite agreement
protocol that saves resources during normal-case operation
by supporting passive replication.

In traditional BFT systems [4,/17,/18,129], all (non-faulty)
replicas participate in both the agreement and the execution
of requests. As recent work has shown [9,/33], in the absence
of faults, it is sufficient to actually process a request on only
f + 1replicas as long as it is guaranteed that all other repli-
cas are able to safely obtain changes to the application state.
In CheapBFT, we take this idea even further and propose

Replica Py

(active)

Replica P»

(passive)

CASH S>
Replica P;
(active)
CASH S,

REQUEST | PREPARE | COMMIT REPLY

Client
Leader

Active
replicas

Passive
replica

UPDATE
— Remote messages .- » Internal messages

Figure 3. CheapBFT architecture with two active replicas
and a passive replica (f = 1) for normal-case operation.

our CheapTiny protocol, in which only f + 1 active replicas
take part in the agreement stage during normal-case oper-
ation (see Figure [3). The other f replicas remain passive,
that is, they neither agree on requests nor execute requests.
Instead, passive replicas modify their states by processing
validated state updates provided by the active replicas. This
approach minimizes not only the number of executions but
also the number of protocol messages.

3.3 Fault Handling

With only f + 1 replicas actively participating in the pro-
tocol, CheapTiny is not able to tolerate faults. Therefore, in
case of suspected or detected faulty behavior of one or more
active replicas, CheapBFT abandons CheapTiny in favor of
a more resilient protocol. The current CheapBFT prototype
relies on MinBFT [31] for this purpose, but we could have
selected other BFT protocols (e. g., AZM-PBFT-EA [3])) that
make use of 2f + 1 replicas to tolerate f faults.

During the protocol switch to MinBFT, CheapBFT runs
the CheapSwitch transition protocol to ensure that replicas
start the new MinBFT protocol instance in a consistent state.
The main task of non-faulty replicas in CheapSwitch is to
agree on a CheapTiny abort history. An abort history is a
list of protocol messages that indicates the status of pend-
ing requests and therefore allows the remaining non-faulty
replicas to safely continue agreement. In contrast to Ab-
stract [14], which relies on a similar technique to change
protocols, an abort history in CheapBFT can be verified to be
correct even if it has only been provided by a single replica.

4. Normal-case Protocol: CheapTiny

CheapTiny is the default protocol of CheapBFT and de-
signed to save resources in the absence of faults by mak-
ing use of passive replication. It comprises a total of four
phases of communication (see Figure[4), which resemble the
phases in PBFT [4]. However, as CheapBFT replicas rely on
a trusted subsystem to prevent equivocation, the CheapTiny
protocol does not require a pre-prepare phase.

4.1 Client

During normal-case operation, clients in CheapBFT be-
have similar to clients in other BFT state-machine-repli-
cation protocols: Upon each new request, a client sends a

Figure 4. CheapTiny protocol messages exchanged between
a client, two active replicas, and a passive replica (f = 1).

(REQUEST, m) message authenticated by the client’s key
to the leader; m is a request object containing the id of the
client, the command to be executed, as well as a client-
specific sequence number that is used by the replicas to en-
sure exactly-once semantics. After sending the request, the
client waits until it has received f + 1 matching replies from
different replicas, which form a proof for the correctness of
the reply in the presence of at most f faults.

4.2 Replica

Taking up the separation introduced by Yin et al. [34], the
internal architecture of an active CheapBFT replica can be
logically divided into two stages: the agreement stage estab-
lishes a stable total order on client requests, whereas the ex-
ecution stage is responsible for processing requests and for
providing state updates to passive replicas. Note that as pas-
sive replicas do not take part in the agreement of requests,
they also do not execute the CheapTiny agreement stage.

Both stages draw on the CASH subsystem to authenticate
messages intended for other replicas. To decouple agreement
messages from state updates, a replica uses two trusted coun-
ters, called ag and up.

4.2.1 Agreement Stage

During protocol initialization, each replica is assigned a
unique id (see Figure |5, L.2). Furthermore, a set of f + 1
active replicas is selected in a deterministic way. The ac-
tive replica with the lowest id becomes the leader (L. 3-5).
Similarly to other PBFT-inspired agreement protocols, the
leader in CheapTiny is responsible for proposing the order
in which requests from clients are to be executed. When all
f + 1 active replicas have accepted a proposed request, the
request becomes committed and can be processed safely.

When the leader receives a client request, it first veri-
fies the authenticity of the request (omitted in Figure [5). If
the request is valid and originates from an authenticated
client, the leader then broadcasts a (PREPARE,m,mcy,)
message to all active replicas (L.7-9). The PREPARE con-
tains the client request m and a message certificate mcr,
issued by the local trusted CASH subsystem. The certificate
uses the agreement-stage-specific counter ag and contains
the leader’s identity in the form of the subsystem id.

1 upon initialization do

2 P :=local replica id;

3 active :={po,p1,...Ps };

4 passive = {psi1,Pft2,---1P2f)
5 leader := select_leader(active);

7 upon receiving (REQUEST, m) such that P = leader do
8 mcy, 1= createMCqg(m);
9 send (PREPARE, m, mcy) to all in active;

11 upon receiving (PREPARE, m, mcy,) such that

(meyr, = (leader, -, -)) and checkMCqq4(mer,, m) do
12 mep := createM Cqg(m|/mcy);
13 send (COMMIT, m, mcr, mcp) to all in active;

15 upon receiving C := { (COMMIT, m, mcr,, mcp) with
mcp = (p, -,) from every p in active such that
checkM Cqg(mcp, m|imey,) and all m are equal } do
16 ewxecute(m,C);

Figure 5. CheapTiny agreement protocol for active replicas.

Upon receiving a PREPARE (L. 11), an active replica asks
CASH to verify that it originates from the leader, that the
message certificate is valid, and that the PREPARE is the
next message sent by the leader, as indicated by the as-
signed counter value. This procedure guarantees that the
replica only accepts the PREPARE if the sequence of mes-
sages received from the leader contains no gaps. If the mes-
sage certificate has been successfully verified, the replica
sends a (COMMIT, m,mcr, mcp) message to all active
replicas (L. 13). As part of the COMMIT, the replica prop-
agates its own message certificate mcp for the request m,
which is created by authenticating the concatenation of m
and the leader’s certificate mcy, (L. 12). Note that issuing
a combined certificate for m and mcy helps replicas de-
termine the status of pending requests in case of a protocol
abort, as the certificate is a proof that the replica has received
and accepted both m and mcy, (see Section[5.3).

When an active replica receives a COMMIT message, it
extracts the sender p from mc,, and verifies that the message
certificate mc,, is valid (L. 15). As soon as the replica has
obtained a set C of f + 1 valid COMMITs for the same re-
quest m (one from each active replica, as determined by the
subsystem id found in the message certificates), the request
is committed and the replica forwards m to the execution
stage (L. 15-16). Because of our assumption of FIFO chan-
nels and because of the fact that COMMITs from all f +1 ac-
tive replicas have to be available, CheapTiny guarantees that
requests are committed in the order proposed by the leader
without explicit use of a sequence number.

4.2.2 Execution Stage

Processing a request m in CheapBFT requires the applica-
tion to provide two objects (see Figure [6] L.2): a reply r
intended for the client and a state update wu that reflects
the changes to the application state caused by the execu-
tion of m. Having processed a request, an active replica asks

1 upon call execute(m,C) do

2 (r,u) := process(m);

3 wucp := createM Cyp(r||ul|C);

4 send (UPDATE, 1, u,C, ucp) to all in passive;
5 send (REPLY, P,) to client;

Figure 6. CheapTiny execution-stage protocol run by active
replicas to execute requests and distribute state updates.

1 upon receiving {
(UPDATE, 7, u, C, ucp) with ucp, = (p, -, -)
from every p in active
such that checkM Clyp (ucp, r||ul|C)
and all r are equal and all v are equal
} do
2 process(u);

Figure 7. CheapTiny execution-stage protocol run by pas-
sive replicas to process updates provided by active replicas.

the CASH subsystem to create an update certificate ucp
for the concatenation of r, u, and the set of COMMITs C
confirming that m has been committed (L. 3). The update
certificate is generated using the counter up, which is ded-
icated to the execution stage. Next, the active replica sends
an (UPDATE, r, u,C,ucp) message to all passive repli-
cas (L.4), and finally forwards the reply to the client (L. 5).

Upon receiving an UPDATE, a passive replica confirms
that the update certificate is correct and that its assigned
counter value indicates no gaps (see Figure|7, L. 1). When
the replica has received f + 1 matching UPDATEs from
all active replicas for the same reply and state update, the
replica adjusts its application state by processing the state
update (L. 1-2).

4.2.3 Checkpoints and Garbage Collection

In case of a protocol switch, active replicas must be able to
provide an abort history indicating the agreement status of
pending requests (see Section|5). Therefore, an active replica
logs all protocol messages sent to other replicas (omitted in
Figures [5| and [6). To prevent a replica from running out of
memory, CheapTiny makes use of periodic protocol check-
points that allow a replica to truncate its message log.

A non-faulty active replica creates a new checkpoint af-
ter the execution of every kth request; k£ is a system-wide
constant (e.g., 200). Having distributed the UPDATE for
a request ¢ that triggered a checkpoint, the replica first
creates an application snapshot. Next, the replica sends a
(CHECKPOINT, ashg, €Cagq, CCyp) message to all (active and
passive) replicas, which includes a digest of the applica-
tion snapshot ash, and two checkpoint certificates, cc,4 and
CCyp, issued under the two CASH counters ag and up.

Upon receiving a CHECKPOINT, a replica verifies that its
certificates are correct and that the counter values assigned
are both in line with expectations. A checkpoint becomes
stable as soon as a replica has obtained matching check-

points from all f 4 1 active replicas. In this case, an active
replica discards all requests up to request q as well as all
corresponding PREPARE, COMMIT, and UPDATE messages.

4.2.4 Optimizations

CheapTiny allows to apply most of the standard optimiza-
tions used in Byzantine fault-tolerant protocols related to
PBFT [4]. In particular, this includes batching, which makes
it possible to agree on multiple requests (combined in a
batch) within a single round of agreement. In the follow-
ing, we want to emphasize two additional optimizations to
reduce communication costs.

Implicit Leader COMMIT In the protocol description in
Figure 4| the leader sends a COMMIT to all active repli-
cas after having received its own (internal) PREPARE. As
this COMMIT carries no additional information, the leader’s
PREPARE and COMMIT can be merged into a single message
that is distributed upon receiving a request; that is, all repli-
cas treat a PREPARE from the leader as an implicit COMMIT.

Use of Hashes PBFT reduces communication costs by
selecting one replica for each request to send a full reply. All
other replicas only provide a hash of the reply that allows
the client to prove the result correct. The same approach can
be implemented in CheapTiny. Furthermore, only a single
active replica in CheapTiny needs to include a full state
update in its UPDATE for the passive replicas.

5. Transition Protocol: CheapSwitch

CheapTiny is optimized to save resources during normal-
case operation. However, the subprotocol is not able to make
progress in the presence of suspected or detected faulty
behavior of replicas. In such cases, CheapBFT falls back to
the MinBFT protocol, which relies on 2 f + 1 active replicas
and can therefore tolerate up to f faults. In this section, we
present the CheapSwitch transition protocol responsible for
the safe protocol switch.

5.1 Initiating a Protocol Switch

In CheapBFT, all nodes are eligible to request the abortion of
the CheapTiny protocol. There are two scenarios that trigger
a protocol switch:

e A client asks for a protocol switch in case the active
replicas fail to provide f+ 1 matching replies to a request
within a certain period of time.

e A replica demands to abort CheapTiny if it suspects or
detects that another replica does not behave according
to the protocol specification, for example, by sending
a false message certificate, or by not providing a valid
checkpoint or state update in a timely manner.

In these cases, the node requesting the protocol switch sends
a (PANIC) message to all (active and passive) replicas (see
Figure [8). The replicas react by rebroadcasting the message

PANIC HISTORY SWITCH REPLY
) Panicking Replies to
CheapSwitch client or different
leader < replica clients

Replicas \ /

Figure 8. CheapSwitch protocol messages exchanged be-
tween clients and replicas during protocol switch (f = 1).

to ensure that all replicas are notified (omitted in Figure [8).
Furthermore, upon receiving a PANIC, a non-faulty active
replica stops to send CheapTiny protocol messages and waits
for the leader of the new CheapSwitch protocol instance
to distribute an abort history. The CheapSwitch leader is
chosen deterministically as the active replica with the lowest
id apart from the leader of the previous CheapTiny protocol.

5.2 Creating an Abort History

An abort history is used by non-faulty replicas to safely end
the active CheapTiny instance during a protocol switch. It
comprises the CHECKPOINTS of all active replicas proving
that the latest checkpoint has become stable, as well as a
set of CheapTiny protocol messages that provide replicas
with information about the status of pending requests. We
distinguish three status categories:

e Decided: The request has been committed prior to the
protocol abort. The leader proves this by including the
corresponding UPDATE (which comprises the set of f+1
CoMMITs from all active replicas) in the history.

¢ Potentially decided: The request has not been commit-
ted, but prior to the protocol abort, the leader has received
a valid PREPARE for the request and has therefore sent
out a corresponding COMMIT. Accordingly, the request
may have been committed on some active replicas. In this
case, the leader includes its own COMMIT in the history.

¢ Undecided: The leader has received a request and/or a
PREPARE for a request, but has not yet sent a COMMIT.
As a result, the request cannot have been committed on
any non-faulty replica. In this case, the leader includes
the request in the abort history.

When creating the abort history, the leader of the Cheap-
Switch protocol instance has to consider the status of all
requests that are not covered by the latest stable check-
point. When a history h is complete, the leader asks the
CASH subsystem for two history certificates hcr o4 and
her, up, authenticated by both counters. Then it sends a
(HISTORY, h, her, ag, her, up) message to all replicas.

5.3 Validating an Abort History

When a replica receives an abort history from the leader
of the CheapSwitch instance, it verifies that the history is

correct. An abort history is deemed to be correct by a correct
replica when all of the following four criteria hold:

e Both history certificates verify correctly.

e The CHECKPOINTs contained in the abort history prove
that the latest checkpoint has become stable.

e Using only information contained in the abort history, the
replica can reconstruct the complete sequence of authen-
ticated protocol messages that the CheapSwitch leader
has sent in CheapTiny since the latest checkpoint.

® The reconstructed sequence of messages does not violate
the CheapTiny protocol specification.

Note that although an abort history is issued by only a single
replica (i. e., the new leader), all other replicas are able to
verify its correctness independently: each UPDATE contains
the f + 1 COMMIT certificates that prove a request to be
decided; each COMMIT in turn comprises a certificate that
proves that the old leader has sent a PREPARE for the re-
quest (see Section[4.2). As replicas verify that all these cer-
tificates are valid and that the sequence of messages sent by
the leader has no gaps, a malicious leader cannot modify or
invent authenticated protocol messages and include them in
the history without being detected. As a result, it is safe to
use a correct abort history to get replicas into a consistent
state (see Section[5.4).

Figure[9]shows an example of an abort history deemed to
be correct, containing the proof CHK that the latest check-
point has become stable, UPDATEs for three decided re-
quests a, b, and ¢, and a COMMIT for a potentially decided
request d. After verifying that all certificates are correct, a
replica ensures that the messages in the history do not vi-
olate the protocol specification (e.g., the UPDATE for re-
quest @ must comprise f + 1 matching COMMITS for a). Fi-
nally, a replica checks that the abort history proves the com-
plete sequence of messages sent by the leader since the latest
checkpoint; that is, the history must contain an authenticated
message for every counter value of both the agreement-stage
counter ag as well as the execution-stage counter up, starting
from the counter values assigned to the last checkpoint and
ending with the counter values assigned to the abort history.

The requirement to report a complete sequence of mes-
sages prevents equivocation by a malicious leader. In par-
ticular, a malicious leader cannot send inconsistent authen-
ticated abort histories to different replicas without being de-
tected: in order to create diverging histories that are both
deemed to be correct, the leader would be forced to include
the first authenticated history into all other histories. Fur-
thermore, the complete message sequence ensures that all
decided or potentially decided requests are included in the
history: if a malicious leader, for example, sends a COMMIT
for a request e after having created the history, all non-
faulty replicas will detect the gap in the sequence of agree-
ment counter values (caused by the history) and ignore the

Mo — x

1 1 1

T T T T T T T
old leader PRE, COM, PRE, PRE. CoM; COM. PREg4
Lt R 4 R v :

i L ¥ 1

Al
agcounter 200 201 g 202 203 204 205
values of } } | : }
new leader CoM, Com;, CoM.
T : Abort
Checkpoint & a ¥ ey history
CHK W UPDy,] (UPD
upeounier
201

new leader 200

202 203 204
(] Messages directly included in the abort history

Figure 9. Dependencies of UPDATE (UPD,) and COM-
MIT (COM,) messages contained in a correct CheapTiny
abort history for four requests a, b, ¢, and d (f = 1).

COMMIT. As a result, it is impossible for e to have been de-
cided in the old CheapTiny instance. This property depends
critically on the trusted counter.

5.4 Processing an Abort History

Having concluded that an abort history is correct, a replica
sends a (SWITCH, hh, hep o9, RCL up, RCP g, hepup) mes-
sage to all other replicas (see Figure[8); hh is a hash of the
abort history, hcr, o and hcr ,p are the leader’s history cer-
tificates, and hcpqy and hcp, are history certificates is-
sued by the replica and generated with the agreement-stage
counter and the update-stage counter, respectively. Note that
a SWITCH is to a HISTORY what a COMMIT is to a PRE-
PARE. When a replica has obtained a correct history and
f matching SWITCH messages from different replicas, the
history becomes stable. In this case, a replica processes the
abort history, taking into account its local state.

First, a replica executes all decided requests that have not
yet been processed locally, retaining the order determined
by the history, and sends the replies back to the respective
clients. Former passive replicas only execute a decided re-
quest if they have not yet processed the corresponding state
update. Next, a replica executes all unprocessed potentially
decided requests as well as all undecided requests from the
history. This is safe, as both categories of requests have been
implicitly decided by f + 1 replicas accepting the abort his-
tory. Having processed the history, all non-faulty replicas are
in a consistent state and therefore able to safely switch to the
new MinBFT protocol instance.

5.5 Handling Faults

If an abort history does not become stable within a certain
period of time after having received a PANIC, a replica sus-
pects the leader of the CheapSwitch protocol to be faulty. As
a consequence, a new instance of the CheapSwitch protocol
is started, whose leader is chosen deterministically as the
active replica with the smallest id that has not already been
leader in an immediately preceding CheapSwitch instance.
If these options have all been exploited the leader of the last

CheapTiny protocol instance is chosen. To this end, the sus-
pecting replica sends a (SKIP, pn1., SCP.qg, SCP,up) MeSsage
to all replicas, where py, denotes the replica that will now
become the leader; scp 4 and scp,,, are two skip certifi-
cates authenticated by both trusted counters ag and up, re-
spectively. Upon obtaining f + 1 matching SKIPs with cor-
rect certificates, pyr becomes the new leader and reacts by
creating and distributing its own abort history.

The abort history provided by the new leader may differ
from the old leader’s abort history. However, as non-faulty
replicas only accept an abort history from a new leader
after having received at least f + 1 SKIPs proving a leader
change, it is impossible that a non-faulty replica has already
processed the abort history of the old leader.

Consider two abort histories hg and h; that are both
deemed to be correct, but are provided by different repli-
cas Py and P;. Note that the extent to which they can dif-
fer is limited. Making use of the trusted CASH subsystem
guarantees that the order (as indicated by the counter val-
ues assigned) of authenticated messages that are included in
both hg and h; is identical across both histories. However,
ho may contain messages that are not in h1, and vice versa,
for example, because one of the replicas has already received
f + 1 ComMMITs for a request, but the other replica has not
yet done so. As a result, both histories may report a slightly
different status for each pending request: In hg, for example,
a request may have already been decided, whereas in hq its
is reported to be potentially decided. Also, a request may be
potentially decided in one history and undecided in the other.

However, if both histories are deemed to be correct, hg
will never report a request to be decided that is undecided
in hy. This is based on the fact that for the request to be-
come decided on Py, P; must have provided an authen-
ticated COMMIT for the request. Therefore, P; is forced
to include this COMMIT in h; to create a correct history,
which upgrades the status of the request to potentially de-
cided (see Section[5.2). In consequence, it is safe to complete
the CheapSwitch protocol by processing any correct abort
history available, as long as all replicas process the same
history, because all correct histories contain all requests that
have become decided on at least one non-faulty replica.

It is possible that the abort history eventually processed
does not contain all undecided requests, for example, be-
cause the CheapSwitch leader may not have seen all PRE-
PAREs distributed by the CheapTiny leader. Therefore, a
client retransmits its request if it is not able to obtain a stable
result after having demanded a protocol switch. All requests
that are not executed prior to or during the CheapSwitch run
are handled by the following MinBFT instance.

6. Fall-back Protocol: MinBFT

After completing CheapSwitch, a replica is properly initial-
ized to run the MinBFT protocol [31]. In contrast to Cheap-
Tiny, all 2f 4 1 replicas in MinBFT are active, which al-

lows the protocol to tolerate up to f faults. However, as we
expect permanent replica faults to be rare [9] [14, [33], the
protocol switch to MinBFT will in most cases be performed
to make progress in the presence of temporary faults or pe-
riods of asynchrony. To address this issue, CheapBFT ex-
ecutes MinBFT for only a limited period of time and then
switches back to CheapTiny, similarly to the approach pro-
posed by Guerraoui et al. in [14].

6.1 Protocol

In MinBFT, all replicas actively participate in the agreement
of requests. Apart from that, the protocol steps are similar
to CheapTiny: when the leader receives a client request, it
sends a PREPARE to all other replicas, which in turn respond
by multicasting COMMITS, including the PREPARE certifi-
cate. Upon receiving f + 1 matching COMMITs, a replica
processes the request and sends a reply back to the client.
Similar to CheapTiny, replicas in MinBFT authenticate all
agreement-stage messages using the CASH subsystem and
only accept message sequences that contain no gaps and are
verified to be correct. Furthermore, MinBFT also relies on
stable checkpoints to garbage collect message logs.

6.2 Protocol Switch

In CheapBFT, an instance of the MinBFT protocol runs only
a predefined number of agreement rounds . When the xth
request becomes committed, a non-faulty replica switches
back to the CheapTiny protocol and handles all subsequent
requests. Note that if the problem that led to the start of
MinBFT has not yet been removed, the CheapTiny fault-
handling mechanism ensures that the CheapSwitch transi-
tion protocol will be triggered once again, eventually initial-
izing a new instance of MinBFT. This new instance uses a
higher value for to account for the prolonged period of
asynchrony or faults.

7. Evaluation

In this section, we evaluate the performance and resource
consumption of CheapBFT. Our test setting comprises a
replica cluster of 8-core machines (2.3 GHz, 8 GB RAM)
and a client cluster of 12-core machines (2.4 GHz, 24 GB
RAM) that are all connected with switched Gigabit Ethernet.

We have implemented CheapBFT by adapting the BFT-
SMaRt library [2]. Our CheapBFT implementation reuses
BFT-SMaRt’s communication layer but provides its own
composite agreement protocol. Furthermore, CheapBFT re-
lies on the CASH subsystem to authenticate and verify mes-
sages. In addition to CheapBFT and BFT-SMaRt, we eval-
uate an implementation of plain MinBFT [31]; note that to
enable a protocol comparison the MinBFT implementation
also uses our CASH subsystem. All of the following exper-
iments are conducted with system configurations that are
able to tolerate a single Byzantine fault (i. e., BFT-SMaRt:
four replicas, MinBFT and CheapBFT: three replicas). In all
cases, the maximum request-batch size is set to 20.

7.1 Normal-case Operation

We evaluate BFT-SMaRt, MinBFT, and CheapBFT during
normal-case operation using a micro benchmark in which
clients continuously send empty requests to replicas; each
client waits to receive an empty reply before sending a sub-
sequent request. In the CheapBFT configuration, each client
request triggers an empty update. Between test runs, we vary
the number of clients from 5 to 400 to increase load and mea-
sure the average response time of an operation. With no exe-
cution overhead and only small messages to be sent, the fo-
cus of the benchmark lies on the throughput of the agreement
protocols inside BFT-SMaRt, MinBFT, and CheapBFT.

The performance results in Figure show that re-
quiring only four instead of five communication steps and
only 2f + 1 instead of 3f + 1 agreement replicas, MinBFT
achieves a significantly higher throughput than BFT-SMaRt.
With only the f + 1 active replicas taking part in the agree-
ment of requests, a CheapBFT replica needs to handle fewer
protocol messages than a MinBFT replica. As a result,
CheapBFT is able to process more than 72,000 requests per
second, an increase of 14% over MinBFT.

Besides performance, we evaluate the CPU and network
usage of BFT-SMaRt, MinBFT, and CheapBFT. In order to
be able to directly compare the three systems, we aggregate
the resource consumption of all replicas in a system and
normalize the respective value at maximum throughput to a
throughput of 10,000 requests per second (see Figure[10b).
Compared to MinBFT, CheapBFT requires 24% less CPU,
which is mainly due to the fact that a passive replica does not
participate in the agreement protocol and neither processes
client requests nor sends replies. CheapBFT replicas also
send 31% less data than MinBFT replicas over the network,
as the simplified agreement protocol of CheapBFT results in
a reduced number of messages. Compared to BFT-SMaRt,
the resource savings of CheapBFT add up to 37% (CPU)
and 58% (network).

We also evaluate the three BFT systems in an experiment
in which clients send empty requests and receive replies of
4 kilobyte size. Note that in this scenario, as discussed in
Section[4.2.4] only a single replica responds with the actual
full reply while all other replicas only provide a reply hash to
the client. Figure |11|shows the results for performance and
resource usage for this experiment. In contrast to the previ-
ous benchmark, this benchmark is dominated by the over-
head for reply transmission: as full replies constitute the ma-
jority of network traffic, CheapBFT replicas only send 2%
less data than MinBFT replicas and 8% less data than BFT-
SMakRt replicas over the network. Furthermore, the need to
provide a passive replica with reply hashes reduces the CPU
savings of CheapBFT to 7% compared to MinBFT and 20%
compared to BFT-SMaRt.

In our third micro-benchmark experiment, clients send re-
quests of 4 kilobyte size and receive empty replies; Figure[12]
reports the corresponding performance and resource-usage

o]

— ’iaFTéIS:‘MaRt [CPU: 1.0 = 100% of one core]
in
g 10} BFT-SMaRt [1CheapBFT Sl
= *
g 8 1.6
= . Cheap- 13
o 6 MinBFTx BFT -3
2 : 10
o 4
Q.
8 2
o
Ottt o
0 10 20 30 40 50 60 70 80 CPU Network

Throughput [Kreg/s] Resource type

(a) Throughput vs. response time (b) Average resource usage per
for an increasing number of clients. 10 Kreq/s normalized by throughput.

Figure 10. Performance and resource-usage results for a
micro benchmark with empty requests and empty replies.

T(g} EEAFTB-'S:!\'!‘aRt [CPU: 1.0 := 100% of one core]
‘o 18- X in|
£ 16 BFT-SMaRt CICheapBFT somBis sy
= 14 46MB/s
o 14F
E ot MinBFT
b i
o 10F :‘CheapBFT
g 8
% 6
o 4
o 2
Q

lIO 2‘0 3‘0 4‘0 50 CPU Network

Throughput [Kreg/s] Resource type

(a) Throughput vs. response time (b) Average resource usage per
for an increasing number of clients. 10 Kreq/s normalized by throughput.

Figure 11. Performance and resource-usage results for a
micro benchmark with empty requests and 4 kilobyte replies.

I BFT-SMaRt [CPU: 1.0 := 100% of one core]
CIMinBFT)
[1CheapBFT 130MB/s

7.8

90F BFT-SMaRt
*

60r 93MB/s

5.7

MinBFT 36
x
CheapBFT

46MB/s

Response time [ms]
wn
(=]

*
*

L * i

20 * X

* X

2.4 6 810121416182022 CPU Network
Throughput [Kreg/s] Resource type

(a) Throughput vs. response time (b) Average resource usage per
for an increasing number of clients. 10 Kreq/s normalized by throughput.

Figure 12. Performance and resource-usage results for a
micro benchmark with 4 kilobyte requests and empty replies.

w
=3
S

~ Max. response time: 254ms

[~

G

S
T

)

=3

S
T

=)
S
T

Protocol

switch \

-400 -300 -200 -100 0 100 200 300 400 500
Request numbers

Response time [ms]

o
<]
3

Figure 13. Response time development of CheapBFT dur-
ing a protocol switch from CheapTiny to MinBFT.

results for this experiment. For such a workload, transmitting
requests to active replicas is the decisive factor influencing
both performance and resource consumption. With the size
of requests being much larger than the size of other protocol
messages exchanged between replicas, compared to BFT-
SMaRt, CheapBFT replicas need to send 67% less data over
the network (50% less data compared to MinBFT). In addi-
tion, CheapBFT consumes 54% less CPU than BFT-SMaRt
and 37% less CPU than MinBFT.

7.2 Protocol Switch

To evaluate the impact of a fault on the performance of
CheapBFT, we execute a protocol switch from CheapTiny
to MinBFT during a micro benchmark run with 100 clients;
the checkpoint interval is set to 200 requests. In this experi-
ment, we trigger the protocol switch shortly before a check-
point becomes stable in CheapTiny to evaluate the worst-
case overhead caused by an abort history of maximum size.
Figure |13| shows the response times of 1,000 requests han-
dled by CheapBFT around the time the replicas run the
CheapSwitch transition protocol. While verifying and pro-
cessing the abort history, replicas are not able to execute re-
quests, which leads to a temporary service disruption of max.
254 milliseconds. After the protocol switch is complete, the
response times drop back to the normal level for MinBFT.

7.3 ZooKeeper Use Case

ZooKeeper [16] is a crash-tolerant coordination service used
in large-scale distributed systems for crucial tasks like leader
election, synchronization, and failure detection. This section
presents an evaluation of a ZooKeeper-like BFT service that
rely on BFT-SMaRt, MinBFT, and CheapBFT for fault-
tolerant request dissemination, respectively.

ZooKeeper allows clients to store and retrieve (usually
small) chunks of information in data nodes, which are man-
aged in a hierarchical tree structure. We evaluate the three
implementations for different mixes of read and write oper-
ations. In all cases, 1,000 clients repeatedly access different
data nodes, reading and writing data chunks of random sizes
between one byte and two kilobytes. Figure[14] presents the
performance and resource-usage results for this experiment.

The results show that with the execution stage (i.e., the
ZooKeeper application) performing actual work (and not
just sending replies as in the micro-benchmark experiments
of Section [7.1), the impact of the agreement protocol on
system performance is reduced. In consequence, all three
ZooKeeper implementations provide similar throughput for
write-heavy workloads. However, the resource footprints
significantly differ between variants: in comparison to the
MinBFT-based ZooKeeper, the replicas in the CheapBFT-
based variant save 7-12% CPU and send 12-20% less data
over the network. Compared to the BFT-SMaRt imple-
mentation, the resource savings of the CheapBFT-based
ZooKeeper add up to 23-42% (CPU) and 27-43% (network).

=)
S

—_] I BFT-SMaRt
(% CIMinBFT
B—SO- [1CheapBFT
[0
=
X 40r
5
a 30r
=
=20
o
|'E 101
0 Read only 70/30 50/50 30/70 Write only

Read/write ratio
(a) Realized throughput for 1,000 clients.

120 I BFT-SMaRt [CPU: 1.0 := 100% of one core]
CIMinBFT

10.0rJCheapBFT

Wil

Read only 70/30 50/50 30/70 Write only
Read/write ratio

o
=

Overall CPU usage

g
o

(b) CPU usage per 10 Kreq/s normalized by throughput.

600
I BFT-SMaRt
CIMinBFT
500FJCheapBFT

: -J_’_‘

Read only 70/30 50/50 30/70
Read/write ratio

Network usage [MB/s]

(c) Network transfer volume per 10 Kreq/s normalized by throughput.

Figure 14. Performance and resource-usage results for dif-
ferent BFT variants of our ZooKeeper service for workloads
comprising different mixes of read and write operations.

8. Discussion

As described in Section the first PANIC received by a
replica triggers the abort of the CheapTiny protocol. In con-
sequence, a single faulty client is able to force a protocol
switch, even if all replicas are correct and the network de-
livers messages in time. In general, we expect such faulty
behavior to be rare, as only authenticated clients get access
to the system (see Section [3.1). Nevertheless, if an authenti-
cated client repeatedly panics, human intervention may be
necessary to revoke the access permissions of the client.
However, even if it takes some time to remove the client
from the system, unnecessary switches to the MinBFT pro-
tocol only increase the resource consumption of CheapBFT
but do not compromise safety.

Having completed the CheapSwitch transition protocol,
all non-faulty replicas are in a consistent state. Follow-
ing this, the default procedure in CheapBFT is to run the
MinBFT protocol for a certain number of requests before
switching back to CheapTiny (see Section[6.2). The rationale

of this approach is to handle temporary faults and/or short
periods of asynchrony which usually affect only a number of
subsequent requests. Note that in case such situations are not
characteristic for the particular use-case scenario, different
strategies of how to remedy them may be applied. In fact, if
faults are typically limited to single requests, for example,
it might even make sense to directly start a new instance of
CheapTiny after CheapSwitch has been completed.

CheapTiny has a low resource footprint, however, the
resource usage is asymmetrically distributed over active and
passive replicas. Accordingly, the active replicas, especially
the leader, can turn into a bottleneck under high load. This
issue can be solved by dynamically alternating the leader
role between the active replicas similar to Aardvark [7] and
Spinning [29]. Furthermore, one could dynamically assign
the role of passive and active replicas thereby distributing
the load of agreement and execution over all nodes.

9. Related Work

Reducing the overhead is a key step to make BFT sys-
tems applicable to real-world use cases. Most optimized
BFT systems introduced so far have focused on improv-
ing time and communication delays, however, and still need
3 f+1 nodes that actually run agreement as well as execution
stage [14,/18]. Note that this is the same as in the pioneering
work of Castro and Liskov [4]. The high resource demand
of BFT was first addressed by Yin et al. [34] with their sep-
aration of agreement and execution that enables the system
to run on only 2f + 1 execution nodes. In a next step, sys-
tems were subdivided in trusted and untrusted components
for preventing equivocation; based on a trusted subsystem,
these protocols need only 2f + 1 replicas during the agree-
ment and execution stages [5}18,123]. The trusted subsystems
may become as large as a complete virtual machine and its
virtualization layer [8, 23], or may be as small as the trusted
counter abstraction [30, 31].

Subsequently, Wood et al. [33] presented ZZ, a system
that constrains the execution component to f + 1 nodes and
starts new replicas on demand. However, it requires 3f + 1
nodes for the agreement task and relies on a trusted hy-
pervisor and a machine-management system. In a previous
work, we increased throughput by partitioning request exe-
cution among replicas [9]. Here, a system relies on a selector
component that is co-located with each replica, and no ad-
ditional trust assumptions are imposed. Moreover, we intro-
duced passive execution nodes in SPARE [10]; these nodes
passively obtain state updates and can be activated rapidly.
The system uses a trusted group communication, a virtual-
ization layer, and reliable means to detect node crashes. Of
all these works, CheapBFT is the first BFT system that lim-
its the execution and agreement components for all requests
to only f + 1 replicas, whereas only f passive replicas wit-
ness progress during normal-case operation. Furthermore, it
relies only on a lightweight trusted counter abstraction.

The idea of witnesses has mainly been explored in the
context of the fail-stop fault model so far [22]. In this regard,
CheapBFT is conceptually related to the Cheap Paxos proto-
col [20], in which f + 1 main processors perform agreement
and can invoke the services of up to f auxiliary processors.
In case of processor crashes, the auxiliary processors take
part in the agreement protocol and support the reconfigura-
tion of the main processor set.

Related to our approach, Guerraoui et al. [14] have pro-
posed to optimistically employ a very efficient but less ro-
bust protocol and to resort to a more resilient algorithm if
needed. CheapBFT builds on this work and is the first to
exploit this approach for changing the number of nodes ac-
tively involved (rather than only for changing the protocol),
with the goal of reducing the system’s resource demand.

PeerReview [15] omits replication at all by enabling ac-
countability. It needs a sufficient number of witnesses for
discovering actions of faulty nodes and, more importantly,
may detect faults only after they have occurred. This is an
interesting and orthogonal approach to ours, which aims at
tolerating faults. Several other recent works aim at verifying
services and computations provided by a single, potentially
faulty entity, ranging from database executions [32] and stor-
age integrity [25] to group collaboration [13]].

10. Conclusion

CheapBFT is the first Byzantine fault-tolerant system to use
f + 1 active replicas for both agreement and execution dur-
ing normal-case operation. As a result, it offers resource
savings compared with traditional BFT systems. In case of
suspected or detected faults, replicas run a transition proto-
col that safely brings all non-faulty replicas into a consis-
tent state and allows the system to switch to a more resilient
agreement protocol. CheapBFT relies on the CASH subsys-
tem for message authentication and verification, which ad-
vances the state of the art by achieving high performance
while comprising a small trusted computing base.

Acknowledgments

We thank the anonymous reviewers for their comments and
our shepherd, Eric Jul, for his guidance. Furthermore, we
are grateful to Michael Gernoth and Christian Spann for
technical support, and to Alysson Bessani, Allen Clement
as well as Marco Vukoli¢ for interesting discussions and
helpful comments on drafts of the paper.

References

[1] S. Berger, R. Céceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn. vIPM: Virtualizing the trusted platform mod-
ule. In Proceedings of the 15th USENIX Security Symposium,
pages 305-320, 2006.

[2] BFT-SMaRt. http://code.google.com/p/bft-smart/.

[3] C. Cachin. Distributing trust on the Internet. In Proceedings of
the Conference on Dependable Systems and Networks, pages
183-192, 2001.

http://code.google.com/p/bft-smart/

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Sys-
tems, 20(4):398-461, 2002.

[5] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In Proceedings of 21st Symposium on Operating
Systems Principles, pages 189-204, 2007.

[6] A.Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin.
BFT: The time is now. In Proceedings of the 2nd Workshop on
Large-Scale Distributed Systems and Middleware, pages 1-4,
2008.

[7] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In Proceedings of the 6th Symposium on Networked
Systems Design and Implementation, pages 153-168, 2009.

[8] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate half
less one Byzantine nodes in practical distributed systems. In
Proceedings of the 23rd Symposium on Reliable Distributed
Systems, pages 174—183, 2004.

[9] T. Distler and R. Kapitza. Increasing performance in Byzan-
tine fault-tolerant systems with on-demand replica consis-
tency. In Proceedings of the 6th EuroSys Conference, pages
91-105, 2011.

[10] T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schroder-
Preikschat. SPARE: Replicas on hold. In Proceedings of the
18th Network and Distributed System Security Symposium,
pages 407-420, 2011.

[11] T. Eisenbarth, T. Giineysu, C. Paar, A.-R. Sadeghi,
D. Schellekens, and M. Wolf. Reconfigurable trusted com-
puting in hardware. In Proceedings of the 2007 Workshop on
Scalable Trusted Computing, pages 15-20, 2007.

[12] P. England and J. Loeser. Para-virtualized TPM sharing. In
Proceedings of the st International Conference on Trusted
Computing and Trust in Information Technologies, pages
119-132, 2008.

[13] A.J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
SPORC: Group collaboration using untrusted cloud resources.
In Proceedings of the 9th Symposium on Operating Systems
Design and Implementation, pages 337-350, 2010.

[14] R. Guerraoui, N. KneZevi¢, V. Quéma, and M. Vukoli¢. The
next 700 BFT protocols. In Proceedings of the 5th EuroSys
Conference, pages 363-376, 2010.

[15] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:
Practical accountability for distributed systems. In Proceed-
ings of the 21st Symposium on Operating Systems Principles,
pages 175-188, 2007.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In Proceed-
ings of the 2010 USENIX Annual Technical Conference, pages
145-158, 2010.

[17] R. Kotla and M. Dahlin. High throughput Byzantine fault tol-
erance. In Proceedings of the 2004 Conference on Dependable
Systems and Networks, pages 575-584, 2004.

[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM Trans-
actions on Computer Systems, 27(4):1-39, 2009.

[19] P. Kuznetsov and R. Rodrigues. BFTW3: Why? When?
Where? Workshop on the theory and practice of Byzantine
fault tolerance. SIGACT News, 40(4):82-86, 2009.

[20] L. Lamport and M. Massa. Cheap Paxos. In Proceedings of
the Conference on Dependable Systems and Networks, pages
307-314, 2004.

[21] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
TrInc: Small trusted hardware for large distributed systems.
In Proceedings of the 6th Symposium on Networked Systems
Design and Implementation, pages 1-14, 2009.

[22] J.-F. Paris. Voting with witnesses: A consistency scheme for
replicated files. In Proceedings of the 6th Int’l Conference on
Distributed Computing Systems, pages 606—-612, 1986.

[23] H. P. Reiser and R. Kapitza. Hypervisor-based efficient proac-
tive recovery. In Proceedings of the 26th Symposium on Reli-
able Distributed Systems, pages 83-92, 2007.

[24] E. B. Schneider and L. Zhou. Implementing trustworthy ser-
vices using replicated state machines. IEEE Security & Pri-
vacy Magazine, 3:34-43, 2005.

[25] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket. Venus: Verification for untrusted cloud storage.
In Proceedings of the 2010 Workshop on Cloud Computing
Security, pages 19-30, 2010.

[26] U. Steinberg and B. Kauer. NOVA: A microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th
EuroSys Conference, pages 209-222, 2010.

[27] E. Stott, P. Sedcole, and P. Cheung. Fault tolerance and
reliability in field-programmable gate arrays. IET Computers
& Digital Techniques, 4(3):196-210, 2010.

[28] M. Strasser and H. Stamer. A software-based trusted platform
module emulator. In Proceedings of the Ist International
Conference on Trusted Computing and Trust in Information
Technologies, pages 33-47, 2008.

[29] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.
Spin one’s wheels? Byzantine fault tolerance with a spinning
primary. In Proceedings of the 28th Symposium on Reliable
Distributed Systems, pages 135-144, 2009.

[30] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.
EBAWA: Efficient Byzantine agreement for wide-area net-
works. In Proceedings of the 12th Symposium on High-
Assurance Systems Engineering, pages 10-19, 2010.

[31] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Verissimo. Efficient Byzantine fault tolerance. /IEEE Trans-
actions on Computers, 2011.

[32] P. Williams, R. Sion, and D. Shasha. The blind stone tablet:
Outsourcing durability to untrusted parties. In Proceedings
of the 16th Network and Distributed System Security Sympo-
sium, 2009.

[33] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cec-

chet. ZZ and the art of practical BFT execution. In Proceed-
ings of the 6th EuroSys Conference, pages 123-138, 2011.

[34] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for Byzan-
tine fault tolerant services. In Proceedings of the 19th Sympo-
sium on Operating Systems Principles, pages 253-267, 2003.

	Introduction
	Preventing Equivocation
	From 3f+1 Replicas to 2f+1 Replicas
	The CASH Subsystem
	Trusted Counter Service
	Implementation
	Integration with CheapBFT
	Performance Evaluation
	Trusted Computing Base

	CheapBFT
	System Model
	Resource-efficient Replication
	Fault Handling

	Normal-case Protocol: CheapTiny
	Client
	Replica
	Agreement Stage
	Execution Stage
	Checkpoints and Garbage Collection
	Optimizations

	Transition Protocol: CheapSwitch
	Initiating a Protocol Switch
	Creating an Abort History
	Validating an Abort History
	Processing an Abort History
	Handling Faults

	Fall-back Protocol: MinBFT
	Protocol
	Protocol Switch

	Evaluation
	Normal-case Operation
	Protocol Switch
	ZooKeeper Use Case

	Discussion
	Related Work
	Conclusion

