
A Kernel for Energy-Neutral Real-Time Systems
with Mixed Criticalities

Peter Wägemann, Tobias Distler, Heiko Janker, Phillip Raffeck, and Volkmar Sieh
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

To appear in: Proceedings of the 22nd Real-Time Embedded Technology and Applications Symposium (RTAS 2016)
Vienna, Austria, 11–14 April 2016

Abstract—Energy-neutral real-time systems harvest the entire
energy they use from their environment, making it essential to
treat energy as an equally important resource as time. As a result,
such systems need to solve a number of problems that so far have
not been addressed by traditional real-time systems. In particular,
this includes the scheduling of tasks with both time and energy
constraints, the monitoring of energy budgets, as well as the
survival of blackout periods during which not enough energy is
available to keep the system fully operational.

In this paper, we address these issues presenting ENOS,
an operating-system kernel for energy-neutral real-time systems.
ENOS considers mixed time criticality levels for different energy
criticality modes, which enables a decoupling of time and energy
constraints during phases when one is considered less critical
than the other. When switching the energy criticality mode, the
system also changes the set of tasks to be executed and is therefore
able to dynamically adapt its energy consumption depending
on external conditions. By keeping track of the energy budget
available, ENOS ensures that in case of a blackout the system
state is safely stored to persistent memory, allowing operations to
resume at a later point when enough energy is harvested again.

I. INTRODUCTION

With the efficiency of energy-harvesting equip-
ment (e.g., solar panels, buck-boost converters) steadily
increasing, more and more embedded systems are deployed
whose lifetime is not limited by their initial battery charge.
Instead, such energy-neutral systems remain operational as
long as they are able to draw energy from their environment.
Such an approach is especially beneficial in locations and
scenarios where manually replenishing the energy storage is
not possible, for example, due to a system being airborne, as
it is the case for Google’s Loon balloon [1] or Facebook’s
solar drone Ascenta [2], which both provide access to the
Internet in areas where no fibers are established.

While the problem of energy being a scarce resource
is not new to the domain of embedded real-time systems,
energy-neutral systems introduce new challenges that have to
be addressed. For example, energy neutrality requires a real-
time system to treat energy as a first-class constraint, equal to
timeliness; in fact, there can even be situations in which energy
becomes more important than timeliness [3], for example,
when there is not enough energy available to keep all system
services continuously running. In order to be able to deal
with such situations, it is crucial to have a scheduling model
that takes into account that some tasks are more critical than
others [4], [5], and at the same time also considers the different
time and energy constraints of different tasks. Challenge 1:
Energy-neutral systems create the need for a scheduling model
that offers the flexibility to handle both mixed criticalities as
well as mixed constraints at task level.

Scheduling tasks with mixed constraints makes it necessary
for an energy-neutral system to not only enforce timing dead-
lines but also energy budgets. Unfortunately, while determining
task execution times via timers is usually straightforward,
state-of-the-art processors lack mechanisms to monitor the
energy consumption of tasks [6]. Even worse, many existing
battery-operated platforms are not able to provide accurate
information about the amount of energy currently available
and consequently impede scheduling decisions. Challenge 2:
Energy-neutral systems require obtaining fine-grained infor-
mation about consumed and available energy budgets.

Probably the greatest difference between energy-neutral
and other battery-operated systems is their behavior in situ-
ations where a system has drained its energy storage. While
other systems at this point reach the end of their lifetime, an
energy-neutral system switches into a sleep mode and wakes up
again as soon as enough energy has been harvested to resume
system operations. For this purpose, an energy-neutral system
needs to provide means to safely store its state to persistent
memory after having detected that energy is low. Furthermore,
the system must have detailed knowledge about the energy
consumption of both tasks as well as suspend/resume proce-
dures in order to guarantee that it only wakes up if there is
enough energy available to continue system execution for at
least a predefined amount of time (e.g., a minimum number of
hyperperiods). Challenge 3: Energy-neutral systems must be
able to ensure consistency across blackout periods.

In this paper, we address the challenges identified above
with ENOS, an operating system kernel for energy-neutral
real-time systems. In contrast to existing scheduling mod-
els [3], [4], ENOS considers independent criticality levels for
time and energy by introducing different energy criticality
modes. Relying on this scheduling approach that takes both
mixed resources (i.e., time and energy) as well as mixed
criticalities (i.e., soft and hard) of tasks into account, the
resources of tasks with lower criticality are potentially real-
located to tasks with higher criticality in order to guarantee
their execution in time or without exceeding given energy
budgets. To solve the associated task scheduling problem, each
energy criticality mode executes a unique set of tasks, which
differs from the task sets of other modes. This flexibility allows
ENOS to favor timeliness over energy during normal-case
operation when the energy available is sufficient to execute
all tasks, and to favor energy over timeliness when energy is
low. Furthermore, our evaluation reveals that the decoupling
of time and energy constraints and the use of distinct energy
criticality modes besides time criticality levels enables more
optimistic schedules in phases where energy is less critical.

To obtain accurate and timely information about energy-
related events, ENOS relies on a signaling mechanism partly
implemented in hardware: energy interrupts. The most impor-
tant use case of the energy-interrupt mechanism in ENOS is
monitoring the battery’s state of charge and notifying the ker-
nel when a specified threshold is reached. Such functionality
is essential as it enables ENOS to adjust the functionality pro-
vided by the system (and consequently its energy consumption)
to the amount of energy actually available. In particular, energy
interrupts assist ENOS in making decisions on when to switch
energy criticality modes.

Energy interrupts also play a crucial role in ensuring that
when the system enters a blackout period there is sufficient
energy left to not only initiate but also complete the suspend
procedure that saves the system state to persistent memory. The
suspend procedure is started as soon as the amount of energy
available falls below a certain threshold, which is determined
by exploiting a priori knowledge on the worst-case energy
consumptions of the tasks involved [7], [8]. After the end of
a blackout, when energy can be harvested again, ENOS does
not resume system operations right away. Instead, it programs
the hardware to trigger an energy interrupt if enough energy
becomes available for the system to at least provide a specific
range of functions for a configurable amount of time. This
way, ENOS prevents the system from trying to resume every
time a tiny amount of energy is harvested.

In summary, our main contributions in this paper are:

1) We present a scheduling model that considers mixed
criticalities as well as time and energy constraints.

2) We introduce the concept of energy interrupts and
provide details on hardware techniques that enable
ENOS to enforce energy budgets.

3) We discuss the mechanism that allows ENOS to keep
its system state consistent across blackout periods.

4) We provide a comprehensive evaluation of the ENOS
implementation using both measurements and simu-
lations of the hardware and the environment as well
as analyses of our scheduling approach.

The remainder of this paper is structured as follows:
Section II gives an overview of ENOS and its system model.
Section III details mixed-criticality scheduling in ENOS. Sec-
tion IV presents energy interrupts and Section V the sus-
pend/resume mechanism. Our current ENOS implementation
is outlined in Section VI and evaluated in Section VII. Finally,
Section VIII discusses related work and Section IX concludes.

II. THE ENOS KERNEL

In this section, we present the underlying system model of
ENOS and give an overview of its basic architecture. Details of
key components and mechanisms are deferred to later sections.

A. System Model

ENOS addresses energy-neutral systems that are able to
draw energy from at least one, possibly multiple sources such
as the sun or wind. If external conditions are good, a system
harvests enough energy to provide all of its services (e.g., the
collection and aggregation of sensor data), but this scenario
does not necessarily always apply. Instead, for example, a

Application

Task τ1 Task τ3 Task τ2 Task τ4 Task τn. . .

EnOS kernel

Deadline monitoring Energy budget monitoring

Mixed-criticality
scheduling

Energy mode
management

Persistent
memory

Suspend Resume

Harvested
energy

Energy budget
management

Energy interrupt Energy query

Figure 1: Overview of the ENOS architecture.

change in weather conditions or the setting sun may lead to
energy becoming scarce. In the general case, such changes
occur gradually over time, that is, at the scale of minutes
or hours. However, under exceptional circumstances (e.g., the
failure of a solar panel), the amount of newly harvested
energy can drop almost instantly from its maximum to zero.
An energy-neutral system must be prepared to deal with
such situations and suspend system operations (in case of a
stationary system) or even abort its mission entirely (e.g., by
initiating an emergency landing) before running out of energy.

In order to be able to react to emergencies, an energy-
neutral system requires a battery in which unused harvested
energy is stored. The capacity of the battery is usually large
enough to keep operations alive for hundreds or a few thou-
sands of system cycles, but far too small to store energy for
the entire mission. As a result, the initial state of the battery
at the start of the mission is negligible.

Applications executed on top of ENOS have real-time
constraints. The nature of energy-neutral systems dictates that
hard real-time constraints can only be guaranteed while the
system is running; as system operations might be suspended
due to a lack of energy, there cannot be a general guarantee that
the system will make progress. ENOS supports applications
comprising a state that may be modified by tasks at runtime.
If the state of an application were to be lost or became
inconsistent as the result of a blackout, the entire mission of the
system could be affected [9]. In consequence, the system needs
to provide a persistent-memory module that enables ENOS to
store the state if energy is low.

B. Architecture

Figure 1 shows an overview of the ENOS architecture as
well as the services provided by the ENOS kernel. Similar to
traditional real-time systems supporting mixed time criticali-
ties, these include the monitoring of timing deadlines. How-
ever, in addition, ENOS supports different energy criticalities
and consequently also enforces energy budgets. As further
discussed in Section III, ENOS distinguishes between different
energy modes, which offer the possibility to adjust the energy
consumption of the system to the amount of energy currently
available. For decisions on when to trigger a mode switch,
ENOS relies on the energy-budget management component
with which it interacts in two possible ways: On the one hand,

ENOS is able to directly issue a query to retrieve information
on the current state of the battery. On the other hand, it may
instruct the energy-budget management component to trigger
an energy interrupt when the battery has reached a certain
state (see Section IV). The latter approach is also used in
the context of the suspend/resume mechanism that enables the
system to remain consistent across blackouts (see Section V).

III. SCHEDULING WITH MIXED CRITICALITIES AND
MIXED CONSTRAINTS

Below, we first provide background on mixed-criticality
scheduling and then present details on the approach used in
ENOS to handle time and energy criticalities independently.

A. Background

Scheduling decisions in energy-neutral real-time systems
require a priori knowledge on both the worst-case execution
time (WCET) and the worst-case energy consumption (WCEC)
of tasks. Unfortunately, precisely determining/capturing the ac-
tual WCET and actual WCEC of a task is usually not possible
for real-world applications [10]. In general, there are two ways
to address this problem: On the one hand, there are static
analysis approaches such as the implicit path enumeration
technique [11] whose results tend to be very pessimistic over-
approximations of the actual WCET and WCEC. As a result,
scheduling decisions based on such values lead to significant
unexploited slack time and unutilized energy resources. On the
other hand, optimistic analysis approaches, which are often
measurement-based [7], [12], are less costly than pessimistic
analyses but may under-approximate the WCET and WCEC.
Therefore, in this case it cannot be ruled out that a task misses
its deadline or exceeds its energy budget.

The concept of mixed-criticality scheduling proposed by
Vestal [4] for real-time systems is able to mitigate this
dilemma. It builds on the basic idea of reacting to emergency
situations by redistributing the resources of tasks with lower
criticalities to tasks with higher criticalities. In particular, each
task is assigned a criticality level and only executed if this
level is greater or equal than a global system criticality level.
Initially, the system starts with the lowest criticality level,
meaning that all tasks are scheduled. If at any time a task
misses its deadline, the system increases its criticality level,
causing tasks with lesser criticality levels to be discarded.
In this approach, the time budget granted to a task depends
on the current system criticality level: The higher the system
criticality level, the more pessimistic WCET estimates are used
to select time budgets. As a result, costly WCET analyses
can be limited to highly critical tasks, because only they are
executed at higher system criticality levels. For all other tasks,
it is sufficient to determine optimistic WCET estimates.

The term mixed criticality in this paper refers to time or
energy criticality and is consequently not directly related to
safety criticality. As Burns and Davis point out in their review
on mixed-criticality systems [13], this term can be seen as
umbrella term for various older scheduling approaches. For
instance, the work of Lehoczky et al. [14] considers dual-
criticality systems with soft and hard tasks. In these systems,
in contrast to soft tasks, the timely execution of hard tasks is
guaranteed. Soft real-time tasks are scheduled in a best-effort
strategy, for example, to reduce their response time.

Energy
mode M1

HIT
M1

LOT
M1

Task set T1

Energy
mode M2

HIT
M2

LOT
M2

Task set T2

Energy
mode Mn

HIT
Mn

LOT
Mn

Task set Tn

Suspend mode

HIT

LOT

Task set Tsusp

Emergency mode

HIT

LOT

Task set Temer

E
HP

M1
E

HP

M2
E

HP

Mn
E

HP

Memer
E

HP

Msusp
,

Time criticality level changes Energy criticality mode changes

Figure 2: The ENOS scheduling model comprises different
energy (criticality) modes, in each of which a dedicated task set
is executed. Within an energy mode, the system time criticality
level can vary between low (LOT) and high (HIT).

Völp et al. [3] showed that for energy-constrained sys-
tems it is crucial for the scheduling model to take energy
into account, otherwise mixed-criticality guarantees could be
violated. In their approach, the system criticality level not
only determines the degree of confidence that is necessary
for a task’s execution-time estimate but also for its energy-
consumption approximation.

B. Approach

The scheduling model of ENOS builds on the works pre-
sented in the previous section, but in contrast to the approach
by Völp et al. considers dedicated energy criticality modes (or
“energy modes” for short) that are independent of time criti-
cality levels. The rationale behind this design decision is the
observation that in energy-neutral systems time and energy
constraints are both equally important, but not necessarily at
the same time. For example, during normal-case operation
when sufficient energy is available, guaranteeing timeliness is
essential. On the other hand, when an energy-neutral system
is about to run out of energy, the most important task is to
safely store its state to persistent memory, independent of how
long this procedure takes.

In ENOS, different tradeoffs between time and energy con-
straints are represented by different energy criticality modes.
As shown in Figure 2, in each energy mode the system
executes a dedicated set of tasks. This offers the possibility to
adjust the functionality provided by the system to the amount
of energy currently available. For example, whenever energy is
plentiful, a solar-powered drone may run in the lowest energy
criticality mode, thereby collecting sensor data, preprocessing
it, and transmitting the results to a base station. If due to a
change in weather conditions, the amount of energy harvested
is no longer sufficient for the drone to operate at full capacity,
the system switches to a higher energy criticality mode, in
which it might still collect and preprocess data but defer
transmission. If conditions improve after some time, the drone
can resume full operation, otherwise it continues to gradually
deactivate services. In the worst case, the amount of energy
available becomes so low that the drone needs to abort its
mission and initiate an emergency landing. For such purposes,
ENOS provides an emergency mode from which, once entered,
the system will never return. However, not all energy-neutral

systems require such a mode, for example, due to being
stationary and therefore able to survive with all services being
switched off for a long period of time. For these use-case
scenarios, ENOS offers a suspend mode that on entry stores
the system’s state to persistent memory and also handles the
wakeup when external conditions improve (see Section V).

At low and medium energy criticality modes, in which time
constraints predominate, ENOS applies the mixed-criticality
approach proposed by Vestal (see Section III-A) to guarantee
timeliness. Nevertheless, even in these modes energy con-
straints are of importance: At all times, ENOS monitors the
amount of energy currently available in order to ensure that
there is sufficient energy left for the system to switch to higher
energy criticality modes and eventually reach the suspend or
emergency mode in case it becomes necessary. The decisions
of when to switch are based on energy-consumption estimates
for hyperperiods, which are calculated for each energy crit-
icality mode independently considering the WCEC estimates
of the respective tasks (see Section III-D for details). While
for low energy criticality modes optimistic analysis techniques
are applied to determine energy-consumption estimates, more
conservative techniques are used for higher energy criticality
modes. This approach offers the key benefit of costly energy-
consumption analyses only being required for the few tasks
that are executed in the highest energy criticality modes, in
which the system provides a limited functionality.

C. Mode-Specific Task Sets

A task set T in ENOS consists of implicit deadline-
constrained, periodic, mixed-criticality tasks; each task is inde-
pendent of every other task in the set. A task τi ∈ T is defined
by the quadruple τi = (Di, Ci, L

T
i , Ei), where Di denotes the

deadline as well as the release time between subsequent jobs
of the task. The vector Ci denotes the execution-time estimates
for different system time criticality levels (see Section III-A)
and LT the time criticality level of the task. For better
readability, we use the constants LOT and HIT to denote
the lowest and highest time criticality level, respectively. Due
to not only taking time constraints but also energy constraints
into account, for each task ENOS furthermore relies on an
energy-consumption estimate Ei, which is determined using
either optimistic or pessimistic analysis approaches, dependent
on the energy criticality mode.

The task sets of different energy modes in ENOS do not
necessarily have to be disjoint. Instead, a task may be executed
in more than one energy mode. With the most energy being
available at the lowest energy criticality mode, in general
this mode provides the most services. For higher energy
criticality modes, more and more services are deactivated,
which typically results in their task sets becoming smaller.
However, this does not mean that the task set of an energy
mode is always a subset of the task sets of lower energy
modes. In fact, it is usually a good idea to implement the
handling of low-energy situations in separate tasks and to
only include them in the task sets of higher energy modes.
Overall, the use of mode-specific task sets has two major
benefits: First, it allows tasks to be executed only when they
are actually needed. As a consequence, the size of task sets
is minimal, which greatly improves schedulability. Second, it
offers the possibility to use different implementations of the

same service at different energy criticality modes. For example,
when energy is plentiful, sensor data can be preprocessed with
the algorithm that provides the highest precision, while at
higher energy criticality modes the algorithm with the lowest
energy consumption is selected.

D. Switching Between Energy Criticality Modes

Managing time and energy criticalities independently offers
ENOS the flexibility to treat both time and energy as first-class
constraints and still favor one over the other when it becomes
necessary. Of key importance in this context is the mechanism
that allows ENOS to switch between energy criticality modes
in order to adapt the energy consumption of the system to the
amount of energy currently available. If external conditions
change slowly (i.e., at the scale of minutes or hours), which
we consider the normal case, such mode switches occur rather
infrequently, resulting in the system to remain in the same
energy criticality mode for many consecutive hyperperiods,
which usually take in the order of tens or hundreds of mil-
liseconds. In contrast, under exceptional circumstances it may
be required to switch energy modes more quickly. However,
even in such cases ENOS guarantees that each energy mode
entered is executed for at least an entire hyperperiod in order
to allow the system to degrade gracefully in a safe way.

1) Basic Mechanism: ENOS initiates an energy-mode
switch when the amount of energy stored in the battery
falls below (for increasing the mode level) or exceeds (for
decreasing the mode level) predefined thresholds:

Eswitch(i) = EHPsusp/emer +
∑

i≤j≤|M |
EHPMj ,max (1)

In the basic case, the thresholds Eswitch are calculated
using Equation 1, in which |M | describes the total number of
modes (not including the suspend and emergency modes) and
EHP an energy-consumption estimate of the hyperperiod in
a particular energy mode. In this context, EHPsusp/emer either
represents the value for the suspend mode or the emergency
mode, depending on which of these alternatives is configured
in the system (see Section III-B). To ensure that there is suf-
ficient energy available to complete the suspension/emergency
procedure, EHPsusp/emer is an over-approximation determined
by energy analyses performed with the 0g WCEC analyzer [7].
For all other energy modes, ENOS relies a mode-specific
grace budget EHPMj ,max

to guarantee the execution of at least
one hyperperiod of each mode. EHPMj ,max

is an upper bound
based on the mode-specific duration of a hyperperiod and
the maximum physical power consumption of the hardware
platform (see Section VI-C). In summary, by considering only
pessimistic energy-consumption estimates for the computation
of thresholds, ENOS can guarantee that even under exceptional
circumstances, the system is able to reach and complete the
suspend or emergency mode.

A mode switch from an energy criticality mode Mm to
the next higher mode Mm+1 occurs if the amount of energy
available falls below the threshold Eswitch(m). In contrast,
a switch from mode Mm to the next lower energy criticality
mode Mm−1 is triggered if the threshold Eswitch(m − 1) is
exceeded. In order to learn about thresholds being surpassed,
ENOS sets up an energy interrupt (see Section IV). If the

EB1 GB1 EB2 GB2 E
HP

Msusp

M1→M2 M2→Msusp

M1←M2 M2←Msusp

Full
battery

Empty
battery

EBj : Execution budget (HMj
− 1) · EHP

Mj
GBj : Grace budget EHP

Mj,max

Figure 3: Mode-switch thresholds for an example system with
three different energy criticality modes M1, M2, and Msusp.

energy interrupt fires in the middle of a hyperperiod, ENOS
continues to execute the task set of the current energy criticality
mode until the end of the hyperperiod is reached and then
performs the mode switch. As a result, highly time-critical
tasks are always able to run to completion. After a mode
switch, the new energy criticality mode starts with the lowest
system time criticality level.

2) Extended Mechanism: As an extension to the basic
mechanism presented in the previous section, ENOS allows
system developers to configure mode-switch decisions by
indicating how many hyperperiods HMj should be executed in
each energy criticality mode Mj . By this means, it is possible
to control the thresholds for mode switches, and consequently
to customize the degradation process.

As illustrated in Figure 3, the extended mechanism not
only relies on grace budgets but also considers mode-specific
execution budgets. In contrast to the pessimistic grace budgets,
the execution budgets for lower energy criticality modes are
determined by optimistic, measurement-based energy analy-
ses. Such analyses provide close under-approximations of the
actual WCEC of a hyperperiod and offer the key benefit of
being less costly than static code analysis approaches [7].
While a grace budget targets the completion of a single
hyperperiod, an execution budget aims at remaining in an
energy mode for at least HMj

− 1 hyperperiods. Computing
mode-switch thresholds based on a combination of both grace
budgets and execution budgets consequently allows ENOS to
take into account the number of hyperperiods HMj specified
by the system developer for an energy mode Mj . In the
extended mechanism, the mode-switch thresholds E∗switch are
computed using Equations 2 and 3 by adding the grace-budget-
based thresholds Eswitch of the basic mechanism to the sum
of execution budgets Eexec; EHPMj

is the measurement-based
estimate of the energy consumption of a hyperperiod in energy
criticality mode Mj [3].

E∗switch(i) = Eswitch(i) +

{
Eexec(i) for Mm →Mm+1

Eexec(i− 1) for Mm →Mm−1
(2)

Eexec(i) =
∑

i<j≤|M |
(HMj − 1) · EHPMj

(3)

Figure 3 shows that the thresholds for switching to higher
energy criticality modes in the extended mechanism differ
from the thresholds at which ENOS changes to lower energy
criticality modes. The rationale behind this approach is to
prevent the system from frequently changing energy modes

due to the amount of energy available fluctuating around
a mode-switch threshold. ENOS achieves this by applying
the following strategy relying on different thresholds: When
energy becomes scarce, the system remains in its current mode
as long as possible before switching to a higher mode. On the
other hand, when the battery charges, ENOS delays the switch
to a lower energy mode until there is enough energy to execute
the new mode Mj for a certain number of hyperperiods HMj

.

Note that the number of hyperperiod execution cycles HMj

configured by the developer is only an advice to ENOS on
when to trigger an energy-mode switch. If the actual energy
consumptions during runtime never exceed the optimistically
determined WCECs, HMj

represents the minimum number
of hyperperiod executions in mode Mj . In particular, the
system may remain longer in an energy mode in case external
conditions improve after having entered the mode. On the other
hand, if the execution budgets determined for lower energy
modes turn out to be too optimistic for the given circumstances,
the system may switch to a higher energy criticality mode
early. Nevertheless, even then the pessimistic grace budgets
ensure that there is sufficient energy available to execute at
least one full hyperperiod in each energy criticality mode.

3) Discussion: Energy-mode switches in ENOS only occur
at hyperperiod boundaries, even if an energy interrupt triggers
during the execution of a hyperperiod (see Section III-D1).
This design decision has been made for mainly two reasons:
First, with hyperperiods in ENOS often taking only tens or
hundreds of milliseconds, switching between hyperperiods still
allows the system to react to changes in environmental condi-
tions quickly, compared to the minutes or hours ENOS usually
remains in the same energy mode. Second, reconfiguring the
system during the execution of a hyperperiod would require
additional measures to ensure safety. This is especially true if
the reconfiguration involves a switch to another task set, as it
might be the case in ENOS (see Section III-C). In contrast,
performing an energy-mode switch safely is straightforward at
the end of a hyperperiod when no tasks are running and the
system is in a consistent state.

In order to be able to guarantee that in any case the system
has enough energy to complete the current hyperperiod before
switching the energy mode, the thresholds used to set up
energy interrupts in ENOS include a grace budget for the
current mode (and all higher modes, respectively), that is, a
pessimistic estimate of the energy consumption of a single
hyperperiod. As discussed in Section III-D1, the size of the
grace budget depends on the characteristics of the hardware
platform and is determined so that it is physically impossible
for the system to consume more energy while completing the
rest of a hyperperiod, independent of when exactly the energy
interrupt triggers. This approach allows ENOS to ensure that
enough energy is available to switch modes without requiring
costly energy analyses for lower energy criticality modes.

IV. ENERGY INTERRUPTS

Considering time constraints as well as energy con-
straints requires means for monitoring both timing deadlines
and energy budgets. Most embedded hardware platforms are
equipped with numerous general-purpose timers with high ac-
curacies, which can be exploited to monitor timing deadlines.

Software Hardware

−

+

Comparator

Energy storage

Required budget

Energy
interrupt

EnOS

Set
threshold

E
Assess
state
of charge

Receive
energy
interrupts

Figure 4: ENOS uses mechanisms for energy interrupts to
enforce energy budgets and to assess the current energy budget.

However, commercial off-the-shelf platforms do not provide
equivalent hardware features for reacting on energy-related
events. Although some embedded platforms exist that offer the
possibility to poll the energy budget available using suitable
sensors, this technique does not support the monitoring of
thresholds, which is essential for building a lightweight energy-
mode switching mechanism in ENOS. To circumvent this
problem, we utilize an interrupt-oriented approach that is partly
implemented in hardware: energy interrupts. In the following,
we first present a basic overview of how energy interrupts are
realized in ENOS and then discuss hardware-related details.

A. Approach

In order to be notified when the state of charge of the
battery reaches a certain threshold, ENOS sets up an energy
interrupt and then immediately continues to execute the appli-
cation. As illustrated in Figure 4, to set up an energy interrupt,
the kernel forwards the required energy budget as well as the
threshold type (i.e., whether it is an upper or a lower threshold;
omitted in the figure) to a special hardware component capable
of accessing the system’s energy storage. At this point, the
hardware starts to continuously compare the configured value
with the amount of energy actually available. Depending on
the threshold type, if the battery’s state of charge exceeds or
falls below the threshold, the hardware triggers an interrupt,
which is then handled by ENOS. In addition to being notified
about energy-related events via interrupt, ENOS is also able
to synchronously assess the current state of charge by polling
the hardware component.

B. Practical Considerations

To implement precise energy interrupts in practice, it is
crucial to be able to accurately assess the amount of energy
available in the battery. For this purpose, ENOS currently
exploits electric double-layer capacitors (i.e., supercapacitors)
as energy storage. Supercapacitors provide several advantages
compared to traditional lithium-ion batteries: For example,
supercapacitors have a monotonic relationship between the
voltage over the capacitor and the energy stored and can
therefore be modeled as ideal capacitors [15]. As a conse-
quence, precise digital-to-analog converters in combination
with comparators can be used to set the required budget.
The analog value of this budget and the voltage over the
supercapacitor form the inputs for a comparator whose output
then indicates the energy interrupt. Furthermore, charging a
supercapacitor can be achieved by simply limiting the input
voltage, making additional charging circuitry unnecessary.

Buchli et al. [16] have shown that the state-of-charge
assessment under varying operation conditions (i.e., aging-
effects, temperature influence) is feasible within acceptable
tolerances (i.e., ≤ 5 %). To compensate the remaining impre-
cision and to ensure that enough energy is available in the
system, ENOS makes pessimistic assumptions when assessing
the current state of charge. Furthermore, the system monitors
energy budgets at the granularity of energy modes; this is
practical considering the precision of our current energy-
interrupt implementation (see Section VII-D). Although al-
ready practical, our goal is to further improve precision as
part of future work.

A possible alternative to the comparator-based approach
currently employed in ENOS is to benefit from recent im-
provements in coulomb-counting circuits [17]. Such circuits
provide an interrupt once a predefined amount of energy has
been consumed, which makes them a perfect match to ENOS’s
interfaces for enforcing energy budgets. However, coulomb-
counting circuits are not able to assess the total state of charge,
but the drawn charge. Furthermore, adding such a component
to the hardware prototype, which is described in Section VI-A,
would require additional circuitry.

V. SURVIVING BLACKOUTS

For many energy-neutral systems it is not possible to guar-
antee a continuous flow of energy, for example, because they
harvest energy via solar panels. For such systems, it is essential
to safely suspend operations once a blackout occurs and to
resume them after energy becomes available again. Below, we
present the suspend/resume mechanism of ENOS and discuss
how our approach facilitates application development.

A. Suspension & Resumption

As discussed in Section III-B, ENOS provides a dedicated
energy criticality mode, the suspend mode, that encapsulates
the functionality that is necessary for the energy-neutral system
to survive sustained blackouts; the suspend mode is assigned
the highest energy criticality. In contrast to other energy
modes, while in suspend mode, the system no longer considers
time constraints but only focuses on safely making its state
persistent, independent of how much time this procedure
takes. For this purpose, ENOS currently relies on ferroelectric
RAM (FRAM), which provides acceptable access latencies,
low static power consumption, and long durability [9].

During the suspension procedure, the system needs to save
all volatile state that is required either by the application or by
ENOS itself in order to resume execution from the point of
suspension as soon as enough energy can be harvested again.
In general, the state to store includes all data segments of the
application and the kernel as well as the system’s hardware
state (e.g., calibration values of peripherals).

After a blackout period is over, the system begins to
recharge its battery by harvesting energy. ENOS offers devel-
opers the possibility to configure the wakeup point by selecting
the energy criticality mode at which system operations are
to be resumed. Before going to sleep, the system sets up
an energy interrupt for the threshold of the specified energy
mode (see Section III-D2). When the battery’s state of charge
exceeds the threshold, the hardware triggers an interrupt, as a
result of which ENOS resumes execution.

1 /∗ Global variables ∗/
2 int index, value;
4 energy_agnostic_store(int sensor_value) {
5 /∗ Begin transaction protecting the variables index and value. ∗/
6 begin(index, value);
8 /∗ Increment index and store sensor value. ∗/
9 index++;

10 value = sensor_value;
12 /∗ Commit transaction and make updates persistent. ∗/
13 commit(index, value);
14 }
16 enos_store(int sensor_value) {
17 index++;
18 value = sensor_value;
19 }

Figure 5: Example functions consistently storing a collected
sensor value assigned to a unique index in energy-agnostic
systems (top) and ENOS (bottom).

B. Determining the Suspend-Mode Energy Budget

To ensure consistency, it is crucial that the system does not
run out of energy while writing its state to persistent memory.
As a consequence, it is essential for ENOS to reserve an energy
budget that is equal to or larger than the worst-case energy
consumption of the suspend mode. To determine the size of
this energy budget, we perform static code analyses [7] on the
task set executed in the suspend mode. Such analyses require
fine-grained energy-cost models comprising information on the
energy consumption of hardware components, including the
persistent memory.

Unfortunately, determining safe over-approximations for
FRAM accesses is not straightforward: First, in contrast to tim-
ing behavior, the energy characteristics of a platform are usu-
ally not accurately documented; this is especially true for fine-
grained information such as the energy consumption of single
read/write accesses, since the behavior highly depends on the
actual wiring of the platform. Second, the energy consumption
of a memory operation in some cases depends on the actual
values of the data to be stored, as the number of low-level
hardware components involved varies for different inputs [18].
We solve both issues by conducting extensive measurement-
based analyses. The foundation for these analyses is a tool au-
tomatically generating micro-benchmarks, which are executed
on the target platform. The measurement results are then obtain
relying on a precise energy-measurement device that is further
described in [19]. The benchmark generator considers different
sizes of both read and write accesses on the FRAM memory
as well as different values for these accesses. The gathered
energy-cost models are then utilized in the static analysis of
the suspend mode’s energy consumption.

C. Impact on Applications

The fact that ENOS is able to guarantee that at all times
there is enough energy available to fully execute the suspend
mode not only increases the resilience of energy-neutral sys-
tems, it also facilitates their design and implementation. In
traditional systems, application tasks running on top of an
energy-agnostic operating system themselves have to take care

of ensuring that their state remains consistent, for example, by
relying on transactions. In contrast, application tasks executed
by ENOS are freed of the responsibility to worry about
consistency, because the system guarantees that they run to
completion once they have been started and that the state of
the application is safely stored in case of a blackout.

Figure 5 illustrates the differences in approaches using an
example function that stores the latest sensor value collected
accompanied by a unique index. In this example, we assume
it is crucial for the application that the index is only increased
if the value stored actually reflects the latest sensor reading.
As shown by the energy_agnostic_store function, a
typical approach enabling an application to fulfill such a
requirement is the use of transactions, with which in this case
it is possible to guarantee that the values of the two variables
index and value are kept consistent: If the task runs
long enough to successfully commit the transaction (line 13),
both updates are stored; otherwise, the changes are discarded.
Without the use of a transaction, consistency could not be
ensured, since the system might run out of energy after having
executed the increment of index (line 9), but before having
written the new sensor data into value (line 10).

As shown by example of the enos_store function in
Figure 5, ENOS does not require the application to use trans-
actions due to guaranteeing that the system will not run out of
energy while executing an application task. Besides providing
the benefit of minimizing development and implementation
costs, this system property also allows saving energy, because
state variables only have to be written to persistent memory
once per system suspension, instead of once per task execution.

VI. IMPLEMENTATION

In this section, we present details of our current ENOS
implementation (depicted in Figure 6) and discuss how we
determine grace budgets for energy consumption.

A. Hardware Components

Solar cells (1©), which are able to provide up to 5.6W,
serve as energy source for the energy-neutral system. The
cells are hooked up to an energy-harvesting circuit (2©) that
either steps up or down the input voltage to charge superca-
pacitors (3©) storing the harvested energy. A switching voltage
regulator (4©) provides a constant input voltage for the embed-
ded computing platform, an NXP Freedom KL46Z board (5©),
which features a Cortex-M0+ processor. The platform uses an
external non-volatile FRAM chip (6©) to make the system state
persistent when not enough energy is available to continue
operation. FRAM is a suitable technology for this application
scenario due to the fast read and write access latencies, the
data retention (up to 200 years), and the sufficient read/write
endurance (up to 1012 times per byte) [20]. Besides the
low dynamic power consumption, the FRAM component has
another important advantage: It can be connected to a general
input/output pin that allows to power the component only when
it actually needs to be utilized, that is, for the duration of
writing the system state to memory.

The supercapacitors are charged using a balancing circuit,
which is integrated into the energy-harvesting step-up/-down
converter (LTC3331), up to 5V. Consequently, the overall

5 Computing
Platform

3 Energy Storage

4 Voltage
Regulator

1 Energy Source

2 Harvesting Circuit

6 Non-Volatile Memory

Figure 6: The ENOS operating system requires a tightly
coupled interaction between hard- and software components.

energy in the system can be approximated using the equation
E = 1

2CU
2. The voltage is read using an internal 12-bit

analog-to-digital converter. Thus, up to about 30 J can be stored
in the system. For comparison, this is enough to suspend and
resume the system more than 3,900 x with up to 10 KiB of
memory. Energy interrupts are implemented using a digital-to-
analog converter and a comparator both featured by the board.

When using supercapacitors as energy storage, the influ-
ence of leakage currents cannot be disregarded in general [21].
However, since our prototype platform is equipped with a total
capacity of 5F the effect can be considered as minor (i.e., in
the range of 20 µA [22]) during the runtime of around 10min
assuming no energy is harvested from the environment.

B. WCET & WCEC Analyses

ENOS requires knowledge on the energy consumption
of the system in different energy criticality modes. For this
purpose, we rely on the 0g WCEC analyzer [7], which we
extended for this work. In general, 0g provides two different
kinds of energy-consumption estimates: On the one hand, soft
energy budgets are determined by means of genetic algorithms
and represent close under-approximations of the actual WCEC;
consequently, they can be used in ENOS to compute execution
budgets for the mode-switch mechanism (see Section III-D2).
On the other hand, hard energy budgets are based on analyses
with the implicit path enumeration technique (IPET) [11] and
represent safe over-approximations of the actual WCEC; as
such, they play an important role in determining the energy
budget of the suspend mode (see Section V-B).

In order to utilize 0g for ENOS, we had to extend the
energy-cost model of the hardware platform, which provides
information on the energy consumption of different opera-
tions and components. In particular, we determined the en-
ergy consumption of non-CPU-internal components such as
I2C communication, usages of direct-memory-access (DMA)
features, the setup of the comparator and the digital-to-analog
converter, accesses to persistent memory (see Section V-B), as
well as static power consumption. To determine these values,
we implemented a benchmark generator that allowed us to
conduct extensive measurements on the hardware platform
using a wide spectrum of micro-benchmarks.

0g has originally been designed to only provide energy-
consumption estimates, which is why for ENOS we also had to
extend the tool with an instruction-level execution-time model

of the embedded computing platform in order to yield WCET
results for tasks. Similar to energy estimates, 0g now uses
genetic algorithms to determine soft budgets for execution
times, while hard budgets are based on IPET analyses.

Our current prototype distinguishes between two criticality
levels for time (low and high) and three criticality levels
for energy (i.e., low, medium and high). To introduce addi-
tional (medium) criticality levels based on budgets provided
by 0g, it is possible to exploit a characteristic of genetic algo-
rithms: such algorithms trade off analysis time for precision,
which means that in general more accurate results can be
obtained by prolonging their execution.

C. Computing Grace Budgets

ENOS guarantees that even in case of an instant blackout,
there is enough energy available to execute an entire hyperpe-
riod of each higher energy criticality mode (see Section III-D).
This is possible, because when computing the thresholds for
energy-mode switches, the system considers the maximum
amount of energy that could be consumed within a hyperperiod
at each higher energy mode (i.e., the grace budgets EHPMj ,max

in Equation 1). Note that one possibility to determine these
mode-specific grace budgets is to perform a full worst-case
energy-consumption analysis of the corresponding task sets.
However, while such an approach is feasible for a single energy
mode (i.e., the suspend/emergency mode, see Section V-B),
applying it to all energy modes in the system is too expensive.
With the exception of the highest energy mode, we therefore
use a different technique to assess grace budgets: We exploit
the physical restrictions that are inherent to the hardware of
the energy-neutral system.

The current drawn by the overall system is bounded due
to physical limitations of the voltage regulator. For example,
the switching regulator of the ENOS platform is able to
provide currents of up to 150mA. Furthermore, the regulator’s
maximum input voltage is 5.0V, which is dictated by the
harvesting circuit. The switching regulator allows for constant
efficiency modeling in the range of the typical output load of
the complete system [15], [23]. Based on these values and
the fixed duration of the hyperperiod of an energy mode (for
which inaccuracies of the system clock need to be considered),
it is possible to calculate a grace budget for the mode. For
instance, for a hyperperiod of 100ms the budget is about
82mJ, which is less than 0.27 % of the capacity of the energy-
storage component (i.e., about 30 J, see Section VI-A). To
put this number further into perspective: The average current
drawn of the overall system in the standard run mode of the
processor is about 11mA, resulting in an energy consumption
of about 5.5mJ per hyperperiod for a utilization of 100 %,
which is a factor of nearly 15 difference. This means that,
in the worst case, the over-approximation of the grace budget
causes ENOS to trigger the switch to the next higher energy
mode only about two seconds earlier than actually necessary.

D. Mixed-Criticality Mixed-Constraints Scheduler

The implementation of our mixed-criticality scheduler only
comprises about 1,100 lines of C code, without utilities such
as lists and drivers for accessing peripherals (e.g., digital-
to-analog converter, comparator). In addition, only a lim-
ited amount of about 100 lines of assembly code is neces-

40 50 60 70 80 90 100

0

500

1,000

1,500
1,483

1,329
1,240

763

1,417

822
888

1,256

1,136
1,075

677

1,286

712 733

Utilization of task set [in %]

A
v
er
a
g
e
en

er
g
y
u
sa
g
e
[µ
J
]

No Split

EnOS

Figure 7: ENOS yields smaller energy budgets for hyperperi-
ods due to treating energy only in distinct situations as critical.

sary (i.e., for switching tasks in the scheduler). The mode
changes between lower and higher energy criticality levels are
performed as described in Section III-D. The monitoring of
deadlines and thus also the switches to higher time criticality
levels are performed on each timer tick (i.e., each millisecond).
For switches to lower time criticality levels, we implemented
an idle-time protocol [24], which allows to optimistically
return to lower levels as soon as slack time is detected through
idling. If necessary, it would also be possible to utilize more
sophisticated level-change protocols [25].

VII. EVALUATION

In this section, we present evaluations of our scheduling
approach and the benefits of criticality-dependent energy bud-
gets for hyperperiods. Furthermore, we compare the off-line
calculation of hyperperiod energy bounds with measurements
conducted on our prototype hardware platform and evaluate the
state-of-charge assessment. Finally, we demonstrate measure-
ments of the energy-interrupt mechanism and show execution
traces of energy-mode switches.

A. Benefits of Criticality-Dependent Energy Budgets

At lower energy criticality modes, ENOS utilizes opti-
mistic energy-consumption estimates to make scheduling de-
cisions (see Section III-D2). In the following, we analyze the
impact of this approach on the energy budgets of hyperperi-
ods (EHP) by comparing them to energy budgets determined
using the EA-OCBP approach proposed by Völp et al. [3].
This algorithm simulates all possible mode transitions during
the hyperperiod and computes the maximum energy value from
these traces. Unlike ENOS, EA-OCBP does not differentiate
between energy criticality modes and time criticality levels;
instead, the criticality level of a task influences both the WCET
and WCEC estimate.

We synthetically generate 10,000 task sets using the
UUniFast algorithm by Bini and Buttazzo [26] with utiliza-
tion values ranging from 40 % to 100 % (in steps of 10 %).
Only mixed-criticality schedulable tasks are considered in
this evaluation. The WCEC values are approximated using
to an average power consumption of 55mW (i.e., the power
consumption in standard run mode without using peripherals,
see Section VI-C) multiplied with the chosen WCET values.
Note that in general deriving WCEC estimates by multiplying

Task Criticalities WCETs WCEC

τ1,M1
LOT , LOE 13 ms 649 µJ

τ2,M1
HIT , LOE 13 ms, 37 ms 649 µJ

τ3,M1
LOT , LOE 15 ms 845 µJ

τ1,M2
LOT , MIDE 13 ms 807 µJ

τ2,M2
HIT , MIDE 13 ms, 37 ms 807 µJ

τ3,M2
LOT , MIDE 15 ms 1183 µJ

τ1,Msusp LOT , HIE 13 ms 965 µJ

τ2,Msusp HIT , HIE 13 ms, 37 ms 965 µJ

τ3,Msusp LOT , HIE 82 ms 3225 µJ

TABLE I: Task parameters considered during the mixed-
criticality mixed-constraints scheduling of ENOS.

the average power consumption with a WCET value cannot be
performed in a safe way [8]. However, for this evaluation, this
assumption gives valuable insight about approximative energy
savings. Additionally, for the synthetic task set generation, we
choose 0.7 as the criticality factor between time criticality
levels and consider the two levels LO (low) and HI (high).
The hyperperiods range from 100 ms to 10,000 ms. We use
periods that are factors of these hyperperiods (excluding one),
as randomly chosen periods might lead to unrealistically large
hyperperiods due to prime numbers.

Figure 7 shows the results for the computation of hyper-
period budgets without splitting the time and energy dimen-
sion (“No Split”) and the budgets used in ENOS for the lowest
energy criticality mode. In this figure, the average energy
usage describes the arithmetic mean of energy bounds at each
utilization level of the feasible task sets; the utilization refers
to the utilization of HI-tasks. For the energy value, only the
dynamic energy consumption is considered (i.e., approximately
2 mA from the 11 mA of total current drawn). The results show
that by relying on optimistic energy-consumption estimates for
all tasks, ENOS is able to operate with up to 17.5 % smaller
energy budgets. Consequently, the thresholds that determine
when to perform a mode switch are also smaller, which allows
the system to stay longer at lower energy criticality modes.

B. Precision of Execution Budgets

In the following, we evaluate the precision of execution
budgets by comparing the estimates used by ENOS to compute
mode-switch thresholds with energy-consumption measure-
ments gained from executions on the real hardware platform.
For this purpose, we analyze a set of three tasks τi for two
different energy criticality modes M1 and M2 (see the first
two task sets τi,M1

and τi,M2
in Table I). The tasks τ1 and

τ2 are sorting algorithms, while task τ3 computes the next
prime number of 1201. In all cases the job’s release time is at
the start of the hyperperiod. One hyperperiod on M1 and M2

takes 100ms. Note that in addition to the calculation of energy
budgets described in the EA-OCBP approach [3], we extended
the algorithm to also consider the energy consumption of idle
times in order to be able to compare calculated execution
budgets with actual measurements. In addition to idle times,
our algorithm also considers both execution-time as well as
energy-consumption overheads including, for example, context
switches, budget violations, and timer ticks.

0 1 2 3 4 5 6 7

0.59

EHP
measured

EHP
M1

EHP
M2

EHP
HI

5.17

5.39

6.04

6.830.59

0.59

Execution budgets for a hyperperiod [in mJ]

M
ea

su
re
m
en

t
&

m
o
d
es

Figure 8: The over-estimation of statically calculated hyper-
period energy budgets depends on the mode’s criticality.

For our measurements on the real target platform, we rely
on a dual-channel source meter, namely the Keithley 2612. The
instrument is able to measure minimal currents of 100 fA and
minimal voltages down to 100 nV at a temporal resolution of
up to 20 µs. The device was instrumented through Keithley’s
Test Script Processor, to trigger measurements on request of
the ENOS kernel using general-purpose input-output pins.

Figure 8 shows the results of this experiment for one hy-
perperiod. With the worst-case paths being triggered, the mean
value of the measured energy consumption is 5.17mJ and the
standard deviation is 3.6 µJ (250 executions). At the lowest
energy criticality mode M1, ENOS uses an execution budget
of 5.39mJ (including a mode-independent estimate of 0.59mJ
for the system overhead), which is an over-approximation of
around 4.3 % of the value actually measured. Due to more
pessimistic estimates being used, the execution budget of the
energy mode M2, which for comparison in this experiment
executes the same tasks as the energy mode M1, increases to
6.04mJ. Note that this execution budget is still significantly
smaller than the energy budget EHPHI = 6.83mJ that would
be required if the evaluated task set were to be executed in
the highest energy criticality mode, which is also the budget
existing approaches would use if all tasks had the highest
time criticality. In contrast, ENOS is able to rely on smaller
execution budgets for the lower energy modes M1 and M2,
which allows the system to switch back about 21 % and 11 %
earlier, respectively, at times when energy is less critical.

C. Evaluating State-of-Charge Assessment

We evaluate how precisely ENOS assesses the battery’s
current state of charge by comparing the values reported by
ENOS with the results provided by an external measurement
device (Keithley 2612). The experiment starts with a fully
charged energy storage and ends when the system has com-
pleted the suspension procedure. As shown in Figure 9, ENOS
precisely assesses the amount of energy available over the
entire range of charge levels.

D. Evaluating Energy Interrupts

To evaluate the granularity of detecting energy-budget
violations using the energy-interrupt mechanism described in
Section IV, we set up the budget interrupt to a predefined
lower threshold and detect the error of this setup. The interrupt
is detected at a maximum offset of 198mJ (mean: 94mJ,
250 executions). Putting this in relation to the overall available
energy, it corresponds to a worst-case resolution of 0.6 %.

0 100 200 300 400 500 600 700

0

10

20

30

Time [in s]

A
v
a
il
a
b
le

en
er
g
y
[i
n
J
]

EnOS

Measurement device

Differences

Figure 9: Available energy determined inside the ENOS kernel
compared to an external measurement device.

E. Evaluating Energy-Mode Switches

In this section, we evaluate the mode-switching mechanism
of ENOS under varying environmental conditions for two
target platforms with different characteristics: 1) a simulated
small system in which energy-mode switches occur compara-
bly often due to the energy storage being limited to 6 J and
2) the ENOS prototype presented in Section VI that is able to
use up to 30 J to execute tasks. Both systems comprise three
energy criticality modes M1, M2, and Msusp. In mode M1

and mode M2, the systems execute the set of tasks that has
been used for the experiment in Section VII-B. In contrast,
the suspend mode runs two sorting tasks τ1 and τ2 handling
final computations and a task τ3 responsible for executing the
suspension of the system (see Table I).

Simulation-Based Measurements: In order to evaluate
ENOS with an additional platform besides our actual hardware,
we simulate a system that is backed by a small energy
storage. For this purpose, we have extended the virtual machine
FAUMACHINE [27] and run a comprehensive simulation that
comprises the energy source with configurable amounts of
harvested energy, the energy storage, the non-volatile memory,
and the entire NXP Freedom KL46Z board. Figure 10 shows
the result of this experiment. Initially, the battery is fully
charged, which means that ENOS is able to run in the lowest
energy criticality mode M1. At t = 0 s, we switch off the
energy source in order to investigate the system’s reaction
to a blackout. Due to no longer harvesting energy, after
some time ENOS is forced to switch to the next higher
energy criticality mode (t = 86 s) in which it remains for

0

2

4

6

E
n
er
g
y
[i
n
J
]

0 20 40 60 80 100 120 140

M1

M2

Msusp

Time [in s]

E
n
er
g
y
m
o
d
e

Figure 10: Energy-mode switches in the small system: At
t = 110 s the system executes the suspend mode and sleeps
until enough energy has been harvested to resume (t = 114 s).

0

10

20

30
E
n
er
g
y
[i
n
J
]

0 200 400 600 800

M1

M2

Msusp

Time [in s]

E
n
er
g
y
m
o
d
e

Figure 11: Energy consumption and energy-mode switches
over time measured on the real ENOS hardware platform.

Mode Switch Time Static
Eswitch(i)

Observed
Eswitch(i)

M1 → M2 336 s 12,252 mJ 12,218 mJ
M2 → Msusp 579 s 87 mJ 65 mJ
Msusp → M1 636 s 17,640 mJ 18,122 mJ
M1 → M2 742 s 12,252 mJ 12,218 mJ

TABLE II: Comparison of calculated and actual mode-switch
thresholds on the real ENOS hardware platform.

24 seconds. Then, the system detects that the battery is almost
completely drained and consequently decides to initiate the
suspend mode (t = 110 s).

However, by determining the threshold for this switch
based on pessimistic energy-consumption estimates, ENOS
can ensure that at this point, there is still enough energy
left to execute one hyperperiod in the suspend mode before
eventually putting the system to sleep. For this experiment,
we have configured ENOS to resume system operations at
energy mode M1. After we reactivate the energy source, at
t = 114 s ENOS has harvested enough energy to continue in
this mode. Finally, another blackout causes the system to once
again change its energy criticality mode to M2 (t = 125 s).

Measurements on Hardware: The evaluation on the target
platform comprises the whole system consisting of harvest-
ing circuitry, supercapacitors, switching regulator, and the
embedded computing platform. An external current source
serves as input to the harvesting circuitry. Figure 11 presents
the traces gained from this experiment which show that the
ENOS prototype correctly executes the energy-mode switches
required to adjust to changing conditions. In particular, this
includes the execution of the suspend mode after 579 seconds
when energy becomes scarce as well as the resumption of
system operations 57 seconds later. Furthermore, the numbers
of hyperperiods are fulfilled throughout the trace (HM1

= 1000,
HM2

= 2000, hyperperiods of 100 ms).

To illustrate the accuracy with which the ENOS hardware
executes mode switches, Table II shows a comparison of
the thresholds at which an energy-mode switch is due and
the thresholds at which the prototype has actually initiated a
mode switch during the experiment. Based on these numbers,
we make two important observations: First, for switches to
the lower energy criticality modes M1 and M2, the dif-
ference between the calculated and observed thresholds are

small (i.e., between 0.3 % and 3 %). Second, for all switches
from a lower to a higher mode, the absolute difference between
the calculated threshold and the state of charge at which ENOS
actually performed the switch was less than the grace budget
for the lower mode (i.e., 81.52mJ for M1 and M2). This is
important because it confirms that the ENOS hardware is able
to implement the energy budgets defined by the kernel, which
include enough energy to complete a started hyperperiod.

VIII. RELATED WORK

To our knowledge, ENOS is the first operating-system
kernel for energy-neutral real-time systems with both mixed
criticalities and mixed (time and energy) constraints. However,
we are not the first to investigate mixed-criticality schedul-
ing in combination with energy constraints. Völp et al. [3]
demonstrated that energy can surpass timeliness in mixed-
criticality systems. To improve schedulability in such systems,
they presented an energy-aware OCBP algorithm that for each
criticality mode considers distinct WCET values and WCEC
estimates. Extending on their work, we introduce energy
criticality modes that are independent of time criticality levels.
As a result, ENOS is able to not only utilize optimistic WCEC
estimates for tasks with low criticality levels, but for entire task
sets executed while the system has sufficient energy available.

Power management in embedded energy-harvesting wire-
less sensor networks is a broad area of ongoing research [28],
[29], [30], which comprises static (i.e., capacity planning) or
dynamic power management (i.e., reducing the duty cycle
of the sensing node). Buchli et al. [29] presented a power-
management approach to guarantee uninterrupted system op-
eration on a scale of multiple years. To achieve the goal
of energy-neutral operation, their approach exploits varying
circumstances (i.e., intensity of sunlight) and dynamic load
adaption (i.e., reduction of duty cycles). Within a duty cycle,
the system stays active for computations or transmitting data.
In comparison to their work, the ENOS operating-system
kernel also considers real-time requirements and intermittent
operation, and applies suspension and resumption techniques
to enable an energy-neutral system to survive blackout periods.

Reducing energy consumption under the objective of guar-
anteeing timeliness is a well explored topic through the utiliza-
tion of dynamic voltage and frequency scaling (DVFS) [31],
[32], [33]. However, such energy-aware approaches are not
directly applicable for energy-neutral real-time systems as
energy consumption does not necessarily correlate with timing
behavior. For example, switching a general-purpose input-
output pin might be performed within only a few processor
cycles; however, if such an operation activates an external
sensor, it leads to a significantly higher power consumption.
Consequently, WCET and WCEC estimates must be indepen-
dently determined and considered for scheduling, which is
possible in ENOS’s scheduling approach.

Ongoing research on replacing volatile with non-volatile
memory offers new possibilities for energy-neutral platforms
facing intermittent operation [9], [34]. If the application has
the possibility to only access non-volatile memory, after a
blackout it can resume execution at the point at which it
ran out of energy. However, in contrast to the ENOS kernel,
such approaches have the shortcoming that no guarantees on
timeliness are provided.

IX. CONCLUSION

Energy-neutral real-time systems have unique characteris-
tics that distinguish them from other embedded systems: Dur-
ing periods when sufficient energy is available, energy-neutral
systems behave like traditional real-time systems in which
timeliness is the most important requirement. However, if the
amount of energy harvested drops below the minimum level
required to keep system operations alive, energy consumption
suddenly becomes the highest priority. That is, time and energy
constraints are equally important, but not at the same time.

In this paper, we presented ENOS, an operating-system
kernel that has been specifically designed to address the unique
characteristics of energy-neutral systems. ENOS offers the
possibility to specify different energy criticality modes, each
of which executes a dedicated set of tasks with mixed time
criticalities. By switching between energy modes, the system
is able to dynamically adjust the rules by which tasks are
scheduled, depending on external conditions. In the most
extreme case, ENOS stops enforcing timeliness altogether in
favor of ensuring that its state is safely stored to persistent
memory before the system runs out of energy.

ACKNOWLEDGMENT

We thank Martin Hierold and Klaus Hochradel for their
help. This work is supported by the German Research
Foundation (DFG), in part by Research Grant no. SCHR
603/13-1 (Power-Aware Critical Sections), Research Unit
FOR 1508 under grant no. SCHR 603/11-2 (BATS), and the
Bavarian Ministry of State for Economics under grant no.
0704/883 25 (EU EFRE funds).

REFERENCES

[1] Google Inc. Project Loon. [Online]. Available:
https://www.google.com/loon/

[2] J. Constine. (2014) Facebook will deliver Internet via drones
with “Connectivity Lab” project powered by acqhires from Ascenta.
[Online]. Available: http://techcrunch.com/2014/03/27/facebook-drones/

[3] M. Völp, M. Hähnel, and A. Lackorzynski, “Has energy surpassed time-
liness? – Scheduling energy-constrained mixed-criticality systems,” in
Proc. of the 20th Real-Time and Embedded Technology and Applications
Symp., 2014, pp. 275–284.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proc. of the 28th Intl.
Real-Time Systems Symp., 2007, pp. 239–243.

[5] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality
jobs,” IEEE Trans. on Computers, vol. 61, no. 8, pp. 1140–1152, 2012.

[6] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat, “ECOSystem:
Managing energy as a first class operating system resource,” in Proc.
of the 10th Conf. on Architectural Support for Programming Languages
and Operating Systems, 2002, pp. 123–132.

[7] P. Wägemann, T. Distler, T. Hönig, H. Janker, R. Kapitza, and
W. Schröder-Preikschat, “Worst-case energy consumption analysis for
energy-constrained embedded systems,” in Proc. of the 27th Euromicro
Conf. on Real-Time Systems, 2015, pp. 105–114.

[8] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case energy
consumption of embedded software,” in Proc. of the 12th Real-Time
and Embedded Technology and Applications Symp., 2006, pp. 81–90.

[9] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” in Proc. of the 36th Conf. on Program-
ming Language Design and Implementation, 2015, pp. 575–585.

[10] Wilhelm et al., “The worst-case execution-time problem – Overview of
methods and survey of tools,” ACM Trans. on Embedded Computing
Systems, vol. 7, no. 3, pp. 1–53, 2008.

[11] P. Puschner and A. Schedl, “Computing maximum task execution times:
A graph-based approach,” Real-Time Systems, vol. 13, pp. 67–91, 1997.

[12] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner, “Measurement-
based timing analysis,” Leveraging Applications of Formal Methods,
Verification and Validation, vol. 17, pp. 430–444, 2008.

[13] A. Burns and R. Davis, “Mixed criticality systems – A review,”
Department of Computer Science, University of York, York, UK, 6th
Edition, 2015.

[14] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced aperiodic
responsiveness in a hard-real-time environment,” in Proc. of the 8th
Real-Time Systems Symp., 1987, pp. 261–270.

[15] C. Renner and V. Turau, “State-of-charge assessment for supercap-
powered sensor nodes: Keep it simple stupid!” in Proc. of the Intl. Work.
on Algorithms and Concepts for Networked Sensing Systems Powered
by Energy Harvesters, 2012.

[16] B. Buchli, D. Aschwanden, and J. Beutel, “Battery state-of-charge
approximation for energy harvesting embedded systems,” in Proc. of
the 10th Europ. Conf. on Wireless Sensor Networks, 2013, pp. 179–196.

[17] Linear Technology, LTC4150 – Coulomb Counter/Battery Gas Gauge.
[18] J. Pallister, S. Kerrison, J. Morse, and K. Eder, “Data dependent energy

modelling: A worst case perspective,” Computing Research Repository,
arXiv, 2015.

[19] T. Hönig, H. Janker, C. Eibel, O. Mihelic, R. Kapitza, and W. Schröder-
Preikschat, “Proactive energy-aware programming with PEEK,” in Proc.
of the Conf. on Timely Results in Operating Systems, 2014, pp. 1–14.

[20] Fujitsu Semiconductor, FRAM MB85RC256V.
[21] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.-L. Zhang, “Leakage-aware

energy synchronization for wireless sensor networks,” in Proc. of the
7th Intl. Conf. on Mobile Systems, Applications, and Services, 2009,
pp. 319–332.

[22] Eaton, HV Supercapacitors – Cylindrical cells.
[23] Intersil, ISL85412 – Synchronous Buck Regulator.
[24] J. Real and A. Crespo, “Mode change protocols for real-time systems:

A survey and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161–197, 2004.

[25] I. Bate, A. Burns, and R. Davis, “A bailout protocol for mixed criticality
systems,” in Proc. of the 27th Euromicro Conf. on Real-Time Systems,
2015, pp. 259–268.

[26] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30, pp. 129–154, 2005.

[27] M. Sand, S. Potyra, and V. Sieh, “Deterministic high-speed simulation
of complex systems including fault-injection,” in Proc. of the 39th Conf.
on Dependable Systems and Networks, 2009, pp. 211–216.

[28] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Trans. on Embedded
Computing Systems, vol. 6, no. 4, 2007.

[29] B. Buchli, F. Sutton, J. Beutel, and L. Thiele, “Dynamic power
management for long-term energy neutral operation of solar energy
harvesting systems,” in Proc. of the 12th Conf. on Embedded Network
Sensor Systems, 2014, pp. 31–45.

[30] B. Buchli, P. Kumar, and L. Thiele, “Optimal power management
with guaranteed minimum energy utilization for solar energy harvesting
systems,” in Proc. of the 11th Intl. Conf. on Distributed Computing in
Sensor Systems, 2015, pp. 147–158.

[31] E. Bini, G. Buttazzo, and G. Lipari, “Speed modulation in energy-aware
real-time systems,” in Proc. of the 17th Euromicro Conf. on Real-Time
Systems, 2005, pp. 3–10.

[32] M. Bambagini, M. Bertogna, and G. Buttazzo, “On the effectiveness of
energy-aware real-time scheduling algorithms on single-core platforms,”
in Proc. of the 20th Intl. Conf. on Emerging Technology and Factory
Automation, 2014, pp. 1–8.

[33] Y. Zhu and F. Mueller, “Feedback EDF scheduling exploiting dynamic
voltage scaling,” in Proc. of the 10th Real-Time and Embedded Tech-
nology and Applications Symp., 2004, pp. 84–93.

[34] M. Zwerg, A. Baumann, R. Kuhn, M. Arnold, R. Nerlich, M. Herzog,
R. Ledwa, C. Sichert, V. Rzehak, P. Thanigai, and B. O. Eversmann,
“An 82µA/MHz microcontroller with embedded FeRAM for energy-
harvesting applications,” in Proc. of the Intl. Solid-State Circuits Conf.,
2011, pp. 334–336.

